

Betriebsanleitung

optoNCDT ILR 1191

ILR 1191-300

Laser-Distanzmessgerät

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101

73037 Göppingen / Deutschland

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 e-mail info@micro-epsilon.de www.micro-epsilon.de

Inhalt

1.	Sicherheit	
1.1	Verwendete Zeichen	
1.2	Warnhinweise	7
1.3	Hinweise zur CE-Kennzeichnung	8
1.4	Bestimmungsgemäße Verwendung	
1.5	Bestimmungsgemäßes Umfeld	9
2.	Laserklasse	10
3.	Funktionsprinzip, Technische Daten	11
3.1	Statusanzeige	12
3.2	Technische Daten	
3.3	Modelle, Ausstattungsmerkmale	15
4.	Lieferung	16
4.1	Lieferumfang	16
4.2	Lagerung	
5.	Installation und Montage	17
5.1	Sensormontage	
	5.1.1 Modelle (01) und (02) Serielle Schnittstelle	17
	5.1.2 Modelle (03) SSI und (04) Profibus	18
5.2	Reflektormontage	19
5.3	Elektrische Anschlüsse.	21
	5.3.1 Versorgung, RS232/422	21
	5.3.2 Analogausgang	22
	5.3.3 RS232/RS422-Šchnittstelle	
5.4	5.3.5 TriggereingangSSI-Schnittstelle	20 27
5.5	Profibus	
0.0	1 1011000	

6.	RS232-	- oder RS422-Schnittstelle	29
6.1		haften	
6.2		ndos	
6.3		ekodierung Binärformat	
	6.3.1	Distanzmessung	31
	6.3.2	Geschwindigkeitsmessung	33
7.	SSI-Sc	hnittstelle	34
8.	Profibu	us-Schnittstelle	35
8.1		mer	
8.2		ssbedingungen	
8.3		dresse	
8.4		chluss	
8.5		е	
8.6		ntlängen	
8.7		s Parameterdaten	
8.8		S Diagnosedaten	
9.	Betrieb)	43
•	2011.010		
10.		befehle	
10.1		ierung	
10.2		sarten	
	10.2.1	DM – Einzeldistanzmessung	
	10.2.2	DT – Dauerdistanzmessung	
	10.2.3	DF – Einzeldistanzmessung mit Fremdtriggerung	46
	10.2.4	VM – Einzelgeschwindigkeitsmessung	
	10.2.5	VT – Dauergeschwindigkeitsmessung	
10.3		ter	
	10.3.1	AS – Autostartfunktion	
	10.3.2	PL - Visierlaser	
	10.3.3	PR – Rücksetzen auf Werkseinstellungen	
	10.3.4	DR – Auslösen eines Kaltstarts	
	10.3.5 10.3.6	SF – Skalierungsfaktor OF – Offset	
	10.3.6	SO – Set Offset	
	10.3.7	MW – Messfenster	
	10.3.6	SA – Mittelwert	
	10.5.9		

	10.3.10 10.3.11 10.3.12 10.3.13 10.3.14 10.3.15 10.3.16 10.3.17 10.3.18	MF – Messfrequenz [Hz]	54 55 56 56 57 58
	10.3.19	TP - Sensorinnentemperatur	59
	10.3.20 10.3.21	PA – Anzeige aller Parameter HW – Hardwarediagnose	
11.	Hyperte	rminal	61
12. 12.1 12.2 12.3	Funktion: Funktion:	nsstörungen / Fehlermeldungensstörungenshinweiseshinweise	64 64
13.	Reinigu	ng	65
14.	Haftung	für Sachmängel	65
15.	Service	, Reparatur	66
16.	Außerb	etriebnahme, Entsorgung	66
Anlage			
A 1	Optiona	ıles Zubehör	67
A 2	Werkse	instellungen	68

1. Sicherheit

Die Systemhandhabung setzt die Kenntnis der Betriebsanleitung voraus.

1.1 Verwendete Zeichen

In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet:

⚠ VORSICHT

Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verletzungen führt. falls diese nicht vermieden wird.

HINWEIS

Zeigt eine Situation an, die zu Sachschäden führen kann, falls diese nicht vermieden wird.

 \rightarrow

Zeigt eine ausführende Tätigkeit an.

l

Zeigt einen Anwendertipp an.

Messung

Zeigt eine Hardware oder eine(n) Schaltfläche/Menüeintrag in der Software an.

1.2 Warnhinweise

Sicherheitseinrichtungen dürfen nicht unwirksam gemacht werden.

> Verletzungsgefahr

HINWEIS

Sensor nicht in explosionsgefährdeter Umgebung einsetzen.

> Beschädigung oder Zerstörung des Sensors und/oder benachbarter Systeme

Steckverbinder dürfen nicht unter Spannung gesteckt oder gezogen werden. Alle Anschlussarbeiten dürfen nur spannungslos erfolgen.

> Beschädigung oder Zerstörung des Sensors

Versorgungsspannung darf angegebene Grenzen nicht überschreiten.

> Beschädigung oder Zerstörung des Sensors und des Controllers

Vermeiden Sie Stöße und Schläge auf den Sensor.

> Beschädigung oder Zerstörung des Sensors

Kabel vor Beschädigung schützen

> Ausfall des Messgerätes

Nehmen Sie den Sensor nicht in Betrieb, wenn optische Teile beschlagen oder verschmutzt sind.

> Ausfall des Messgerätes

Berühren Sie optische Teile des Sensors nicht mit bloßen Händen. Entfernen Sie Staub und Schmutz von optischen Bauteilen mit äußerster Vorsicht.

> Ausfall des Messgerätes

Hinweis- und Warnschilder dürfen nicht entfernt werden.

1.3 Hinweise zur CE-Kennzeichnung

Für den optoNCDT ILR 1191 gilt:

- EU-Richtlinie 2014/30/EU
- EU-Richtlinie 2011/65/EU, "RoHS" Kategorie 9

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und die dort aufgeführten harmonisierten europäischen Normen (EN). Die EU-Konformitätserklärung wird gemäß der EU-Richtlinie, Artikel 10, für die zuständige Behörde zur Verfügung gehalten bei

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 73037 Göppingen / Deutschland

Das Messsystem ist ausgelegt für den Einsatz im Industriebereich und erfüllt die Anforderungen.

1.4 Bestimmungsgemäße Verwendung

- Der optoNCDT ILR1191 ist für den Einsatz im Industrie- und Laborbereich konzipiert. Es wird eingesetzt zur
- Prozessüberwachung in Stahl- und Walzwerken
- Füllstandsmessungen
- Positionierung von Kränen und Verladeanlagen
- Messung unzugänglicher Messpunkte, zum Beispiel in Hohlräumen, Rohren oder Containern
- Positionsüberwachung von Fahrzeugen und Schiffen
- Geschwindigkeitsmessung von Fahrzeugen und Schiffen
- Das Messsystem darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe Kap. 3.
- Der Sensor ist so einzusetzen, dass bei Fehlfunktionen oder Totalausfall des Sensors keine Personen gefährdet oder Maschinen beschädigt werden.
- Bei sicherheitsbezogenener Anwendung sind zusätzlich Vorkehrungen für die Sicherheit und zur Schadensverhütung zu treffen.

1.5 Bestimmungsgemäßes Umfeld

- Schutzart: IP 67

Betriebstemperatur: -40 bis +60 °C
 Lagertemperatur: -40 bis +70 °C

- Luftfeuchtigkeit: 15 - 90 % (nicht kondensierend)

- Umgebungsdruck: Atmosphärendruck

2. Laserklasse

Die Sensoren ILR 1191 arbeiten mit Halbleiterlasern für die Messung und für das Ausrichten des Sensors.

	Laserklasse	Lasertyp, Wellenlänge
Messlaser	1	Infrarot, 905 nm, unsichtbar
	EN60825-1:2014 / IEC60825-1:2014	Strahldivergenz: 1,7 mrad
Visierlaser	2	Rot, 635 nm, sichtbar
	EN60825-1:2014 / IEC60825-1:2014	

Beim Betrieb der Sensoren sind die einschlägigen Vorschriften nach DIN EN 60825-1 (VDE 0837, Teil 1 von 5/2014) und die in Deutschland gültige Unfallverhütungsvorschrift "Laserstrahlung" (BGV B2 1/97) zu beachten.

Danach gilt:

- Bei Lasereinrichtungen der Klasse 2 ist das Auge bei zufälliger, kurzzeitiger Einwirkung der Laserstrahlung, das heißt Einwirkungsdauer bis 0,25 s, nicht gefährdet.
- Lasereinrichtungen der Klasse 2 dürfen Sie deshalb ohne weitere Schutzmaßnahmen einsetzen, wenn Sie nicht absichtlich länger als 0,25 s in den Laserstrahl oder in spiegelnd reflektierte Strahlung hineinschauen.
- Da vom Vorhandensein des Lidschlussreflexes in der Regel nicht ausgegangen werden darf, sollte man bewusst die Augen schließen oder sich sofort abwenden, falls die Laserstrahlung ins Auge trifft.

Laser der Klasse 2 sind nicht anzeigepflichtig und ein Laserschutzbeauftragter ist nicht erforderlich. Am Sensorgehäuse (Unterseite) ist folgendes Hinweisschild angebracht:

Das Hinweisschild für den EU-Raum ist bereits aufgedruckt, ebenso ein zweites beigelegt, um es vom Anwender an einer anderen Stelle vor der ersten Inbetriebnahme anzubringen. Für Reparatur und Service sind die Sensoren in jedem Fall an den Hersteller zu senden.

Abb. 1 IEC label

lst das Hinweisschild im angebauten Zustand verdeckt, muss der Anwender selbst für ein zusätzliches Hinweisschild an der Anbaustelle sorgen.

3. Funktionsprinzip, Technische Daten

Das optoNCDT ILR 1191 ist ein Laser-Distanzmessgerät, welches Entfernungen im Bereich von 0,5 m bis 3000 m berührungslos und punktgenau misst.

Der Sensor ist für enorme Messweiten mit und ohne Reflektor konzipiert. Durch die sehr hohe Messrate können bewegte Objekte leicht erfasst werden. Dieser Sensor arbeitet nach dem Laserpuls-Laufzeitverfahren und ist deshalb insbesondere für Applikationen mit großen Entfernungen gedacht. Durch verschiedene Schnittstellen und einfache Montagemöglichkeiten ist die Inbetriebnahme des Sensors sehr komfortabel. Für den Außeneinsatz ist der optoNCDT ILR 1191 mit einer integrierten automatischen Heizung ausgestattet.

Der Sensor misst die Entfernungen zu bewegten und statischen Objekten:

- im Bereich von 0,5 m ... 300 m auf natürliche Oberflächen mit einer Reflektivität von 90 %,
- zwischen 300 m und 3000 m auf Reflektoren (zum Beispiel Scotchlite Serie 3290),
- zur Messung von Geschwindigkeiten im Bereich 0 m/s ... 100 m/s (Abstand 0,5 m ... 700 m).

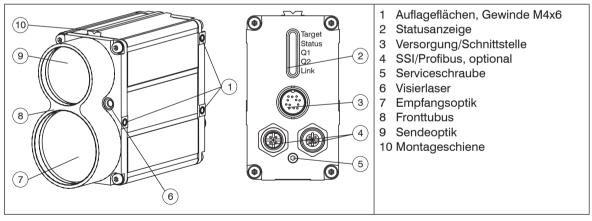


Abb. 2 Bestandteile eines Sensors

Durch den roten Lasermesspunkt (Visierlaser) ist das Messziel eindeutig zu identifizieren. Die Reichweite ist abhängig vom Reflexionsvermögen und der Oberflächenbeschaffenheit des Messziels.

Das Gerät arbeitet auf Basis der Pulslaufzeitmessung.

Der Sensor wird wahlweise mit RS232 oder RS422 angeboten. Die Konfiguration erfolgt bei der Fertigung des Gerätes. Ein nachträgliches Ändern der Schnittstelle ist nicht möglich. Das Gerät besitzt zwei Schaltausgänge und einen externen Triggereingang und Triggerausgang (alle parametrierbar).

Das Auslösen einer Distanzmessung erfolgt:

- über RS232- Schnittstelle oder RS422-Schnittstelle,
- über Profibus DP-V0.
- durch externe Triggerung (im Fremdtrigger-Mode).

3.1 Statusanzeige

LED		Funktion	Anzeige	Zustand
	Target 1	Reflexionsstärke	aus	kein Signal
			rot blinkend	sehr schwaches Signal
			rot	schwaches Signal
			gelb	Signal vorhanden
			grün	gutes Signal
Target Status			grün blinkend	sehr gutes Signal
Q1 Q2	Status	Betriebsbereitschaft	aus	keine Betriebsspannung
Link			rot	technischer Defekt; Betriebsspannung liegt an
(° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			grün	betriebsbereit
	Q1	Schaltausgang 1	aus	aus
			gelb	Betriebsspannung liegt an
	Q2	Schaltausgang 2	aus	aus
Ih d			gelb	Betriebsspannung liegt an
	Link	Status Interface	aus	kein Feldbus
			rot	Fehler Profibus
			gelb	Betriebsspannung liegt an; Profibus nicht aktiv
			grün	Betriebsspannung liegt an; Profibus arbeitet

Abb. 3 Statusanzeige - Funktionen

1) In der Betriebsart DM (Einzeldistanzmessung) erfolgt keine Anzeige der Targeteigenschaften, siehe Kap. 10.3.16.

3.2 Technische Daten

Modell	ILR 1191-300		
Messbereich Distanz 1	0,5 300 m auf natürlich, diffus reflektierenden, Oberflächen von 300 m bis maximal 3000 m auf Reflektortafel		
Linearität ²	±20 mm (bei Messwertausgabe 100 Hz) ±60 mm (bei Messwertausgabe 2 kHz)		
Messwertauflösung	1 mm		
Wiederholgenauigkeit	≤ 5 mm		
Ansprechzeit Distanz	0,5 ms		
Messbereich Geschwindigkeit ³	0 ms ⁻¹ bis 100 ms ⁻¹		
Ansprechzeit Geschwindigkeit	0,1 s bis 0,5 s		
Laserschutzklasse nach EN 60825-1 / IEC 60825-1	Messlaser 905 nm, Laserschutzklasse 1 Ziellaser 635 nm, Laserschutzklasse 2, P ≤ 1 mW		
Laserdivergenz	1,7 mrad		
Lichtfleckdurchmesser	45 x 41 mm bei 10 m		
Betriebstemperatur	-40 °C +60 °C		
Lagertemperatur	-40 °C +70 °C		
Luftfeuchtigkeit	15 % 90 % (nicht kondensierend)		
Schaltausgänge	2 x High Side Switch, max. 0,2 A, kurzschlussfest; programmierbare Schaltpunkte und Schalthysterese, LOW $<$ 1 V, bei R _L $<$ 100 kOhm, Reststrom ca. 5 μ A HIGH = Versorgung - 1 V		
Triggereingang	Triggerflanke und -delay einstellbar, Triggerpuls max. 30 V		
Triggerausgang	HIGH = 4 V / max. 50 mA, Triggersignal wird mit jedem Messwert ausgegeben, LOW < 0,5 V		

Modell	ILR 1191-300	
Serielle Schnittstelle	RS232 und RS422 mit 9,6 kBaud 460,8 kBaud, Format 8N1, ASCII SSI Schnittstelle (RS422), 24 Bit Gray-kodiert, Übertragungsrate: 50 kHz 1 MHz, 25 µs Pause	
Profibus Datenschnittstelle	Profibus RS485 DP-V0 Slave nach IEC 61158/ IEC 61784 Übertragungsrate: 9,6 kBaud 12 MBaud	
Betriebsart	Einzelmessung, Dauermessung, externe Triggerung, Geschwindigkeitsmessung	
Analogausgang	4 mA 20 mA, R₁ ≤ 500 Ohm, 16 Bit DA, Temperaturdrift typ. 20 ppm/°C	
Versorgung	10 30 VDC	
Maximale Leistungsaufnahme	< 5 W ohne Heizung, 11,5 W im Heizbetrieb bei 24 V	
Anschlussart	1 x 12-polig (Binder Serie 723) M16, 2 x 5-polig (Binder Serie 766) M12 B-kodiert	
Schutzart	IP 67	
Abmessungen	136 mm x 57 mm x 104 mm	
Gehäusematerial	Aluminium-Strangpressprofil pulverbeschichtet	
Gewicht	800 g (abhängig von Ausstattung)	

¹⁾ Abhängig vom Reflexionsvermögen des Zieles, Fremdlichtbeeinflussung und atmosphärische Bedingungen

²⁾ Statistische Streuung 95 %

³⁾ Objekt befindet sich in einem Abstand von 0,5 m bis 700 m zum Sensor

3.3 Modelle, Ausstattungsmerkmale

Abb. 4 Rückwand der verschiedenen Modelle des ILR1191-300

Bemerkung: Stecker [3] ist beim ILR 1191-300(03) (SSI) aus Dichtigkeitsgründen auch bestückt.

4. Lieferung

4.1 Lieferumfang

- 1 Sensor optoNCDT ILR 1191-300
- 1 Betriebsanleitung
- 1 CD mit GSD-Datei und Betriebsanleitung

Optionales Zubehör, separat verpackt:

- 1 Versorgungs-/Ausgangskabel PC11xx mit 2 m bis 30 m Länge (je nach Bestellung)
- 1 Profibus IN/OUT- Kabel PBC11xx mit 5 m und 10 m
- 1 Kabelbuchse für Versorgung/Serielle Schnittstelle
- 1 Kabelbuchse/-stecker für Profibus
- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

4.2 Lagerung

Lagertemperatur: -40 bis +70 °C

Luftfeuchtigkeit: 15 - 90 % (nicht kondensierend)

5. Installation und Montage

Der Sensor optoNCDT ILR 1191-300 ist ein optisches System, mit dem im mm-Bereich gemessen wird. Achten Sie deshalb bei der Montage und im Betrieb auf sorgsame Behandlung.

5.1 Sensormontage

5.1.1 Modelle (01) und (02) Serielle Schnittstelle

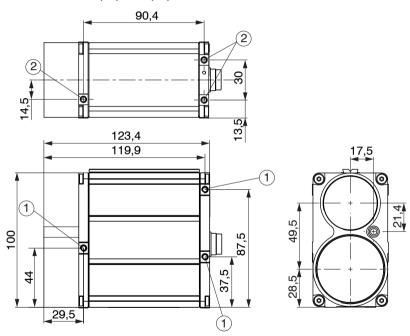


Abb. 5 Maßzeichnung Sensor, Modell ILR 1191-300(01)/ ILR 1191-300(02) Serielle Schnittstelle, Maße in mm, nicht maßstabsgetreu

5.1.2 Modelle (03) SSI und (04) Profibus

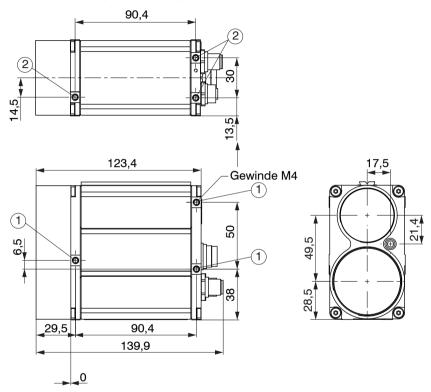


Abb. 6 Maßzeichnung Sensor, Modell ILR 1191-300(03) SSI und ILR 1191-300(04) Profibus, Maße in mm, nicht maßstabsgetreu

Trifft der Laserstrahl nicht senkrecht auf die Objektoberfläche auf, sind Messunsicherheiten nicht auszuschließen. Eine Messung gegen schräg stehende Objekte ist möglich, aber abhängig von der Oberflächenbeschaffenheit des Objektes.

Für die Montage des Sensors sind zwei verschiedene Befestigungsmöglichkeiten vorgesehen:

- Befestigung an einer der Seitenflächen. Der Sensor besitzt drei Auflagepunkte, siehe Abb. 5, siehe Abb. 6, Ziffer 1, mit Gewindebohrungen M4 x 6.
- Befestigung am Gehäuseboden. Der Sensor besitzt drei Auflagepunkte, siehe Abb. 5, siehe Abb. 6, Ziffer 2, mit Gewindebohrungen M4 x 6.

Der Sensor wird durch einen sichtbaren Laserstrahl auf das Zielobjekt ausgerichtet. Zur Ausrichtung des Sensors sind auch die Hinweise für den Betrieb, siehe Kap. 9., zu beachten.

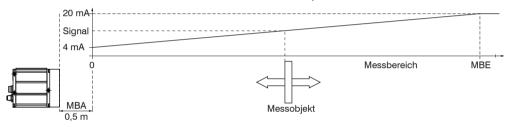


Abb. 7 Messbereichsanfang und Signalverhalten

MBA = Messbereichsanfang MBE = Messbereichsende

Der Nullpunkt des Sensors befindet sich an der Außenfläche des Gehäuse-Frontdeckels.

5.2 Reflektormontage

Der Sensor misst die Entfernungen zu bewegten und statischen Objekten:

- im Bereich von 0,5 m ... 300 m auf natürliche Oberflächen mit einer Reflektivität von 90 %,
- zwischen 300 m und 3000 m auf Reflektoren (zum Beispiel Scotchlite Engineer Grade Typ I, Serie 3290, von 3M)

Der Visierlaser, siehe Abb. 2, Ziffer 6, unterstützt während der Inbetriebnahme die Ausrichtung des Sensors auf das Ziel. Es ist ein Laser der Laserklasse 2 und arbeitet im sichtbaren Bereich bei 635 nm (rot).

HINWEIS

Vermeiden Sie freiliegende Kabelenden. Sie verhindern damit Kurzschlüsse. Beschalten von Ausgängen mit Eingangssignalen kann den Sensor beschädigen! Der Visierlaser ist nicht parallel zum Messlaser ausgerichtet, sondern schneidet diesen in einer Entfernung von 75 m. Die Toleranz der Lage des Visierlasers zum nicht sichtbaren Messlaser in Abhängigkeit vom Abstand zum Messobjekt wird in der folgenden Abbildung, siehe Abb. 8, gezeigt.

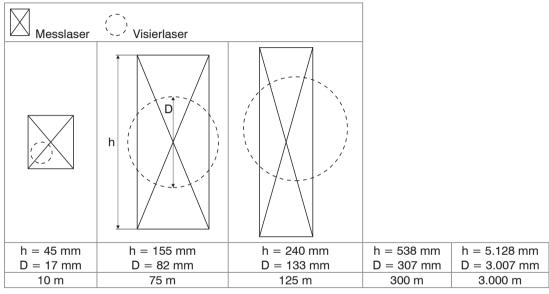


Abb. 8 Lagetoleranz des Visierlasers zum Messlaser

Verfahren Sie bei der Ausrichtung wie folgt:

- Positionieren Sie den Sensor im Nahbereich zum Reflektor (zum Beispiel < 10 m). Der sichtbare Lichtfleck befindet sich in der linken unteren Ecke des Reflektors.
- Positionieren Sie den Sensor in der größten Reichweite zum Reflektor. Prüfen Sie die Lage des Ziellasers auf dem Reflektor und stellen Sie diese gegebenenfalls ein.

5.3 Elektrische Anschlüsse

Abhängig von der Ausstattung der verschiedenen Modelle besitzt der Sensor unterschiedliche Anschlüsse. Einheitlich für alle Modelle ist der Anschluss für Versorgung/Schnittstellen, siehe Abb. 4.

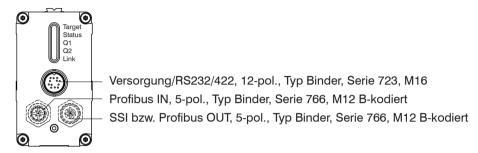


Abb. 9 Steckverbinder an der Rückseite des Sensors, Abweichungen möglich je nach Sensortyp

Die Steckverbinder-Anschlüsse befinden sich auf der Rückseite des Sensors.

5.3.1 Versorgung, RS232/422

Der Anschluss von Versorgung/Schnittstelle erfolgt durch einen 12-poligen Rundsteckverbinder (Flanschstecker) der Serie 723 der Firma Binder.

Der Einsatz dieses Steckverbinders garantiert eine optimale Schirmung sowie eine hohe IP-Schutzart. Als Gegenstück benötigen Sie eine entsprechende Kabelbuchse mit Schirmring.

Optional erhältlich sind verschiedene konfektionierte Kabel mit offenen Enden.

Die optional erhältlichen Versorgungs-/Ausgangskabel PC11x besitzen folgende Biegeradien:

- 47 mm (einmalig),
- 116 mm (ständig).

Pin	Adernfarbe	RS232	RS422	Beschreibung	g
Α	weiß	TxD	RX+	RS232-Sendedaten/RS422-Empfang +	
В	braun	RxD	RX-	RS232-Empfang/RS422-Empfang -	
С	grün	TRIG	TRIG	Triggerein-/ -ausgang	
D	gelb	Signal	Signal	Analogsignal 4 20 mA	
Е	grau	n.c.	TX-	RS422-Sendedaten -	
F	rosa	n.c.	TX+	RS422-Sendedaten +	
G	rot	VCC	VCC	Versorgung 10 30 VDC	
Н	schwarz	n.c.	n.c.	nicht verbunden	
J	violett	Masse	Masse	Masse	
K	grau/rosa	Q 2	Q 2	Schaltausgang 2	
L	rot/blau	Masse	Masse	Masse	
М	blau	Q 1	Q 1	Schaltausgang 1	

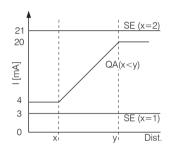
Ansicht: Lötseite, 12-pol. Kabelbuchse

Abb. 10 Anschlussbelegung für Versorgung und Schnittstelle

5.3.2 Analogausgang

Eigenschaften: Stromausgang

- 4 mA ... 20 mA
- Distanzbereichsgrenzen einstellbar
- Verhalten bei Fehlermeldung: 3 mA oder 21 mA
- Auflösung: 16 Bit DA-Wandler
- $\begin{array}{c|c} & \text{rot} & \text{U}_{\text{V}} \\ & \text{statistical states} \\ & \text{gelb} \\ & \text{Lisk} \end{array}$


Abb. 11 Beschaltung Analogausgang

- Lastwiderstand: 500 Ohm gegen GND
- Genauigkeit: ±0,15 %
- Temperaturdrift: typisch 20 ppm/K

Der Analogausgang erlaubt die genormte analoge Distanzdatenübertragung über große Strecken mittels einer Zweidrahtleitung. Der in die Leitung eingeprägte Strom von 4 ... 20 mA ist proportional der gemessenen Distanz in einem einstellbaren Distanzintervall.

Die Parametrierung erfolgt über die serielle Schnittstelle. Das Kommando lautet QAx_y ("_" entspricht Leerzeichen, 0x20hex), siehe 10.3.14.

Die Parametrierung des auszugebenden Stroms bei Auftreten von Fehlmessungen erfolgt über das Kommando SEx, siehe 10.3.12.

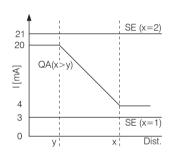


Abb. 12 Verlauf des Ausgangsstroms für x < y und x > y, Definition: $x \neq y$

In der Betriebsart DT (Dauerdistanzmessung) wird der Analogausgang mit jedem neuen Messwert aktualisiert. Dazwischen wird der alte Wert gehalten. In der Betriebsart VM (Einzelgeschwindigkeitsmessung) liefert der Analogausgang kurzfristig die Distanzinformation. In der Betriebsart VT (Dauergeschwindigkeitsmessung) liefert der Analogausgang die Distanzinformation.

Beispiele:

- Der Abstand eines sich bewegenden Objektes soll in einem Bereich von 60 m bis 220 m gemessen werden. Bei einem Abstand von 60 m soll der Sensor 4 mA ausgeben. Kommando an den Sensor: QA60 220
- Der Abstand eines sich bewegenden Objektes soll in einem Bereich von 20 m bis 250 m gemessen werden. Bei einem Abstand von 20 m soll der Sensor 20 mA ausgeben. Kommando an den Sensor: QA250 20

5.3.3 RS232/RS422-Schnittstelle

Eigenschaften:

- Schnittstelleneinstellungen: asynchron, 8 Datenbit, keine Parität, 1 Stoppbit, 115,2 kBaud
- Format/Syntax Übertragungsprotokoll: 7-bit-ASCII
- proprietäres Übertragungsprotokoll

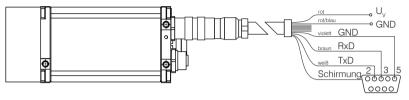


Abb. 13 Verdrahtung RS232 auf 9-pol. Sub-D

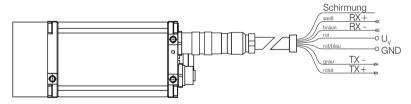
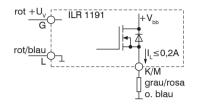


Abb. 14 Verdrahtung RS422

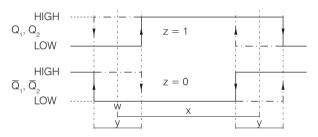
5.3.4 Schaltausgänge Q1 und Q2


Eigenschaften der zwei Ausgänge (High-Side-Switch):

- Signalpegel HIGH = Betriebsspannung 1 V
- Signalpegel LOW < 1 V

- belastbar bis 0,2 A
- kurzschlussfest
- Schaltschwelle und -hysterese einstellbar und invertierbar, einstellbare Fensterfunktion

Die Schaltausgängen Q1 und Q2 stellen Distanzinformationen als logische Schaltinformationen dar. Sie signalisieren die Über- und Unterschreitung eines eingestellten, hysteresebehafteten Schaltbereiches. Sie eignen sich somit hervorragend zur direkten Weiterverarbeitung von Überwachungsgrößen wie Füllzustand oder


Objektdetektion. Die Parametrierung erfolgt über die serielle Schnittstelle. Das Kommando lautet Q1w_x_y_z bzw. Q2 w_x_y_z ("_" entspricht Leerzeichen, 0x20hex), siehe 10.3.13. Die Schaltrichtung des Schaltausgangs wird durch den Parameter z, siehe Abb. 16, bestimmt.

grau / rosa

| = 10 ... 500 mA

Abb. 15 Verdrahtung Schaltausgänge

w Schaltschwelle

- x Schaltbereich; $x \ge 0$; $x \ge y$
- y Schalthysterese; $y \ge 0$
- z Schaltzustand; z = 0 oder 1
- LOW entspricht einer Spannung von < 1 V

HIGH entspricht einer Spannung von VCC - 1 V

Abb. 16 Verhalten der digitalen Schaltausgänge

Es gilt:

- z = 1, zunehmende Distanz
 - Ausgang schaltet von LOW auf HIGH, wenn w + y/2 überschritten wurde,
 - Ausgang schaltet von HIGH auf LOW, wenn w + x + y/2 überschritten wurde.
- z = 0, abnehmende Distanz
 - Ausgang schaltet von HIGH auf LOW, wenn w + x y/2 unterschritten wurde,
 - Ausgang schaltet von LOW auf HIGH, wenn w y/2 unterschritten wurde.

5.3.5 Triggereingang

Der Triggereingang kann auch als Tiggerausgang genutzt werden.

Eigenschaften Triggereingang:

- Signalpegel 3 ... 30 VDC
- LOW-Pegel < 2 V

- Flankentriggerung

- Triggerfunktion aktiv in der Betriebsart DF, siehe Kap. 10.2.3

Eigenschaften Triggerausgang:

- HIGH-Pegel 4 V

- LOW-Pegel < 0,5 V
- Triggersignal wird mit jedem Messwert ausgegeben, Synchronisation mehrerer Geräte

Der Triggereingang ermöglicht die Auslösung einer Einzeldistanzmessung durch ein externes Signal in Form eines Spannungsimpulses. Die Verzögerung der Triggerauslösung (Trigger Delay) sowie die zu triggernde Flanke (Trigger Level) können parametriert werden.

Die Parametrierung des Triggereingangs erfolgt über die serielle Schnittstelle. Das Kommando lautet TDx_y, ("" entspricht Leerzeichen, 0x20hex), siehe Kap. 10.3.11.

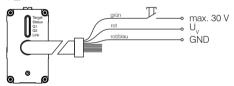
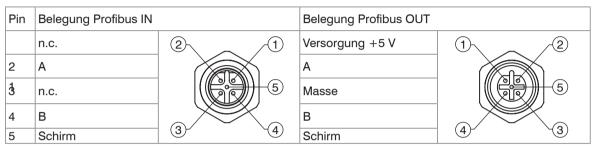


Abb. 17 Verdrahtung Triggereingang

5.4 SSI-Schnittstelle

Lesen Sie dieses Kapitel, wenn Sie mit dem Sensor ILR 1191-300(03) arbeiten.


Der Anschluss der SSI-Schnittstelle erfolgt mit 5-poligen M12-Steckern, B-codiert. Verwenden Sie geschirmte Kabel.

Pin	Belegung SSI	
1	SSI D+	1) 2
2	SSI D-	
3	SSI C+	5
4	SSI C-	
5	Schirm	(4)

5.5 Profibus

Lesen Sie dieses Kapitel, wenn Sie mit dem Sensor ILR 1191-300(04) arbeiten.

Der Anschluss des Profibusses erfolgt mit 5-poligen M12-Steckern, B-codiert. Verwenden Sie geschirmte Kabel.

Bei Profibus-Nutzung erfolgt der Anschluss anderer Profibus-Teilnehmer an den 5-poligen Steckverbindern (A-, B-Leitung). Der Profibus kann am 5-poligen Steckverbinder Profibus OUT abgeschlossen oder fortgesetzt werden. Am Profibus-Ende hat immer ein Abschluss zu erfolgen. Die Versorgungsspannung für den Bus-Abschluss steht am Profibus-OUT zur Verfügung. Die 5 V sind galvanisch von der Versorgungsspannung (VCC) getrennt und können mit 100 mA belastet werden. Der Abschlusswiderstand ist als Zubehör erhältlich.

6. RS232- oder RS422-Schnittstelle

6.1 Eigenschaften

- Schnittstelleneinstellungen: asynchron, 8 Datenbit, keine Parität, 1 Stoppbit, 115,2 kBaud
- Format/Syntax Übertragungsprotokoll: 7-bit-ASCII
- Proprietäres Übertragungsprotokoll
- Kommandos sind case insensitive (Klein- und Großschreibung wird nicht unterschieden)
- Dezimaltrennzeichen bei Ausgabe von Zahlen ist der Punkt "." (0x2E)
- Abschlusszeichen für ein Kommando (Sendebefehl) ist Enter (0x0D)
- Bei Parameter mit mehreren Werten steht zwischen den Werten ein Leerzeichen (0x20)
- Kommandos mit Parametern haben als Antwort das Kommando mit Parametern
- Kommandos ohne Parameter haben als Antwort das Kommando mit aktuellen Parametern
- Kommandos mit Parametern außerhalb des gültigen Wertebereiches haben als Antwort das Kommando mit aktuellen Parametern
- Unbekannte Kommandos und fehlerhafte Parameterformate werden mit einem "?" (0x3F) quittiert

Die Sensoren lassen sich am einfachsten mit Hilfe eines PC mit RS232- oder RS422-Schnittstelle und einem Terminalprogramm, siehe Kap. 11., starten und parametrieren. Das Übertragungsprotokoll hat ASCII-Format.

6.2 Kommandos

Kommandogruppe	Kommando	Beschreibung	Standard(s)	Bereich(e)
Operation Mode	DM	Einzeldistanzmessung	-	-
	DT	Dauerdistanzmessung	-	-
	DF	Einzeldistanzmessung mit Fremdt-	-	-
		riggerung		
	VM	Einzelgeschwindigkeitsmessung	-	-
	VT	Dauergeschwindigkeitsmessung	-	-
Status	TP	Geräteinnentemperatur in °C	-	-
	PA	Anzeige aller Parameter	-	-
	HW	Hardwarediagnose	-	-
Setup Parameter	PR	Rücksetzen auf Werkseinstellun-	-	-
		gen		
	DR	Auslösen eines Kaltstarts	-	-

Kommandogruppe	Kommando	Beschreibung	Standard(s)	Bereich(e)
Setup Parameter	ASs	Autostartfunktion	ID	ID, ID?, DM, DT, DF, VM,
				VT, TP, HW, PA, MF, TD,
				SA, SF, MW, OF, SE, Q1,
				Q2, QA, BR, SD, TE, BB,
				AB, SC, PL, AS
	MFx	Messfrequenz [Hz]	2000	1 2000
	TDx y	Fremdtrigger-Delay [ms] und	00.00	0 300.00
		Level [Flanke]	0	0 oder 1
	SAx	Mittelwert	20	130000
	SFx	Skalierungsfaktor	1	± 0.001 10
	MWx y	Messfenster mit Beginn und	-5000.000	± float 32
		Ende	+5000.000	± float 32
	OFx	Distanz-Offset	0.000	± float 32
	SO	Einzeldistanzmessung und Uber-	-	-
		nahme als Distanz-Offset		
	SEx	Error Mode für Q1, Q2 und QA	1	0 2
	QAx y	Analogausgang mit unterem und	1.000	± float 32
	_	oberem Limit	300.000	± float 32
	Q1wxyz	Schaltausgang Q1 mit Schalt-	0.000	± float 32
		schwelle, Schaltbereich, Schalthys-	0.000	± float 32
		terese und Schaltzustand	0.000	± float 32
			1	0 oder 1
	Q2 w x y z	Schaltausgang Q2 mit Schalt-	0.000	± float 32
		schwelle, Schaltbereich, Schalthys-	0.000	± float 32
		terese und Schaltzustand	0.000	± float 32
			1	0 oder 1
	BRx	Baudrate	115200	9600, 19200, 38400,
				57600, 115200, 230400
				oder 460800

Kommandogruppe	Kommando	Beschreibung	Standard(s)	Bereich(e)
Setup Parameter	SDx y	Ausgabeformat serielle Schnitt-	0	0 2
		stelle	0	0 3
TEx		Abschlusszeichen für Ausgabe	0	0 9
		über serielle Schnittstelle		
SCx		Format SSI	0	0 1
	PLx	Visierlaser	2	03
	BBx	Baudrate Feldbus	0	0
	AB	Busadresse	0	0

6.3 Datendekodierung Binärformat

6.3.1 Distanzmessung

	Distanz	Signal	Temperatur
Byte	3	1	2
MSB	Bit 7	Bit 7	Bit 7
MSB von	Byte 2 ist immer 1	Byte 0 ist immer 0	Byte 1 und 0 sind immer 0
Codierung		Zweierkomplement	
Skalierungsfaktor	Binärwert in Dezimalwert: 1/1000	Binärwert in Dezimalwert: 128	Binärwert in Dezimalwert: 1/10

				Distanz (3 Byte) Byte 2 Byte 1 Byte 0															Signal (1 Byte)													
						Byte 1							Byte 0						Byte 0													
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Data	1	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	0	Χ	Х	Х	Х	Χ	Х	Х	0	Х	Х	Х	Х	Х	Х	Х

					-	Ten	npe	ratı	ur (2 B	yte)						
				Byt	e 1				Byte 0 7 6 5 4 3 2 1 0									
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		
Data	0	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х		

Beispiel Distanz:

Die Einheit hängt ab vom eingestellten Skalierungsfaktor, siehe Kap. 10.3.5.

Beispiel Signal:

0 0 0 0 1 1 0 0 x 128 = 1536

Das Signal liegt zwischen 0 ... 6000 (Tabelle, siehe Kap. 10.3.16).

Beispiel Temperatur:

0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 : 10 = 33,1 °C

Einheit: °C

6.3.2 Geschwindigkeitsmessung

	Geschwindigkeit
Byte	3
MSB	Bit 7
MSB von	Byte 2 ist immer 1
Codierung	Zweierkomplement
Skalierungsfaktor	Binärwert in Dezimalwert: 1/1000

									Ge	sch	wir	ndig	gke	it (3	ВВ	/te)										Distanz						
	Byte 2 Byte 1								Byte 0						Byte 2 - 0																	
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	.0	7	.0	7	.0		
Data	1	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	0	Х	0	Χ	0	Х		

					Sig	ınal				Temperatur								
					Byt	e 0	1		Byte 1 - 0									
	Bit				7.	0				7	0	70						
Ì	Data	0	Х	Х	Х	Х	Х	Х	Х	0	Х	0	Х					

Beispiel Geschwindigkeit:

Die Einheit hängt ab vom eingestellten Skalierungsfaktor, siehe Kap. 10.3.5.

7. SSI-Schnittstelle

Lesen Sie dieses Kapitel, wenn Sie mit dem Sensor ILR 1191-300(03) arbeiten.

Optional wird der Sensor mit einer SSI-Datenschnittstelle (SSI = Synchrones Serielles Interface) ausgestattet. Auf Anforderung eines SSI-Taktgebers startet die Distanzmessung und sendet seine am Schieberegister anliegenden Daten Bit für Bit an eine Steuerung. Abhängig von der Länge und Qualität der verwendeten Datenleitungen können Übertragungsraten von 50 kHz bis 1 MHz bei 25 µs Pausenzeit zwischen zwei Bitfolgen realisiert werden.

- Die Datenlänge beträgt 24 Bit plus 1 Gültigkeitsbit.
- Das Format kann binär und gray-codiert sein.
- Die Parametrierung erfolgt über die serielle Schnittstelle mit dem Befehl SCx.

SCx	x=0Binär, 25 Bit, 1 Gültigkeitsbit
SCX	x=1Gray, 25 Bit, 1 Gültigkeitsbit

Bitfolge:

24	23		2	1	0
MSB	Bit 1 -	24 Distanz abhängig vom eingestellten Skalierungsfaktor		LSB	Fehlerbit

8. Profibus-Schnittstelle

Lesen Sie dieses Kapitel, wenn Sie mit dem Sensor ILR 1191-300(04) arbeiten.

8.1 ID-Nummer

Der Sensor wurde unter der ID-Nummer (Registriernummer) OAA2_{HEX} bei der PROFIBUS Nutzerorganisation e.V. registriert.

8.2 Anschlussbedingungen

Der Sensor kann an jede Profibus-DP-Struktur angeschlossen werden. Der zugehörige Profibus-DP-Master muss in der Lage sein, ein Parametriertelegramm zu schicken. Das zum Master gehörende Projektierungstool (in der Regel Projektiersoftware) muss die Darstellung der in der Gerätestammdatei (GSD-Datei) befindlichen Parameter unterstützen.

Die GSD-Datei (Gerätestammdatei) hat den Namen ILR90AA2.GSD. Zur GSD-Datei gehören die Dateien ILR 1191.dib und ILR 1191.bmp, die der Darstellung des Sensors im Projektierungstool dienen. Das Einbinden der Dateien ist der Dokumentation des Projektierungstools zu entnehmen.

8.3 Slave-Adresse

Die Profibus-Slave-Adresse ist unter Berücksichtigung der anderen Busteilnehmer im Bereich von 0 ... 125 einstellbar. Die Einstellung der Adresse geschieht mittels SSA-Kommando über den Profibus. Wie die Slave-Adresse über das Projektierungstool geändert wird, ist aus dessen Dokumentation zu entnehmen. Im Auslieferungszustand ist Adresse 4 eingestellt.

Die Slave-Adresse wird permanent im EEPROM gespeichert und bleibt auch nach Spannungsausfall erhalten.

Sollen mehrere Slaves (ILR 1191) an einem Profibus betrieben werden, sind diese nacheinander anzuschließen und mit unterschiedlichen Adressen zu versehen.

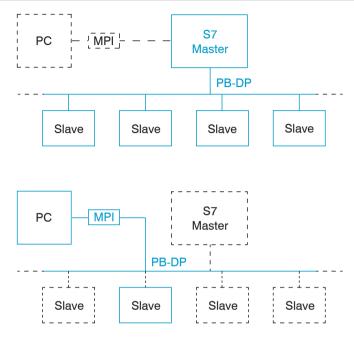


Abb. 18 Slave-Adresse

8.4 Busabschluss

Der Busabschluss ist beim Sensor extern zu realisieren. Die 5-V-Versorgungsspannung für den Abschluss stehen am Steckverbinder Profibus-OUT zur Verfügung. Die 5 V sind galvanisch von der Versorgungsspannung getrennt und können mit 100 mA belastet werden. Das Abschlussnetzwerk ist als optionales Zubehör erhältlich.

8.5 Baudrate

Der Sensor besitzt eine automatische Baudratenerkennung für Baudraten von 9,6 / 19,2 / 93,75 / 187,5 / 500 kBaud und 1,5 / 3 / 6 /12 Mbaud.

8.6 Segmentlängen

Die maximale Segmentlänge zwischen zwei Profibus-Teilnehmern ist abhängig von der gewählten Baudrate. Folgende Segmentlängen müssen eingehalten werden:

Baudrate	Segmentlänge
9,6 93,75 kBaud	1200 m
187,5 kBaud	1000 m
500 kBaud	400 m
1,5 MBaud	200 m
3 12 MBaud	100 m

Zur Realisierung der Segmente wird die Verwendung des Kabeltyps A dringend empfohlen.

Kabeltyp A besitzt folgende Eigenschaften:

- Wellenwiderstand 135 ... 165 Ohm

- Kapazitätsbelag ≤ 30 pf/m

- Schleifenwiderstand ≤ 110 Ohm/km

- Aderndurchmesser > 0,64 mm

- Adernquerschnitt > 0,34 mm²

8.7 Profibus Parameterdaten

Für class 1 Geräte gelten mindestens folgende Parameter:

Octet	Bit	Туре	Output	
1		byte	station status	(profibus default)
2		byte	wd_fact_1 (watch dog)	(profibus default)
3		byte	wd_fact_2	(profibus default)
4		byte	min_tsdr	(profibus default)
56		word	ident number	(profibus default)
7		byte	group ident	(profibus default)
8		byte	spc3 spec	(profibus default)
9	0	bool	unused	
	1	bool	class 2 functionality on/off	
	2	bool	commisioning diagnostic on/off	
	3	bool	unused	
	4	bool	reserved for future used	
	5	bool	reserved for future used	
	6	bool	reserved for manufacturer	
	7	bool	reserved for manufacturer	

Für class 2 Geräte gelten mindestens folgende Parameter:

Octet	Bit	Туре	Output		
1013		unsigned 32	UNUSED – LINEAR ENCODER (MEASURING UNITS PER REVOLUTION)		
1417		unsigned 32	unused - linear encoder (measuring range in)		
1825		byte(s)	unused - (reserved for future use)		
			manufacture specific:		
26	0	bool	unused		
	1	bool	trigger level 0:H ⇔L 1:L⇔H; [TDx y]		
	23	2 bit number	error reaction 02 [SEnn]		
			(0:last valid value, 1:min value, 2:max value)		
	4	bool	0:-, 1:write EEPROM (store all parameter)		
	57	3 bit number	measure mode [0:DF 1:DT 2:VT]		
2728		short	measure frequency [MFnn] 110000		
2932		signed 32	trigger delay [TDx] 01000		
3336		signed 32	display offset [OFnnnn] +/-1000000		
3740		signed 32	output1 switch limit 05000000 [Q1w]		
4144		signed 32	output2 switch limit 05000000 [Q2w]		
4548		signed 32	output1 switch hysterese -50000005000000 [Q1y]		
4952		signed 32	output2 switch hysterese –50000005000000 [Q2y]		
5354		word	diag update time in 0.1 sec		
5556		short	average time [SAnn] 110000		
5760		signed 32	scale factor [SFnn] n*0.00001 (1.0 = 100000)		
6164		signed 32	active output 1: 05000000 [Q1x]		
6568		signed 32	active output 2: 05000000 [Q2x]		
69	0	bool	pegel active range 1: 0/1		
	1	bool	pegel active range 2: 0/1		
	2,3	2 bit number	mode of pilot laser: 03		
	47	-	unused		

Octet	Bit	Туре	Output
7073		signed 32	measure window x
7477	signed 32 measure window y		
7881	381 signed 32 analog x		
8285		signed 32	analog y

Der optoNCDT ILR 1191 ist ein linearer Encoder und misst absolute Entfernungen.

Die Parameter

- Code sequence
- Scaling function control
- Measuring units per revolution und
- Measuring range in measuring units

werden ignoriert.

8.8 Profibus Diagnosedaten

Class 2 functionality	Commissioning diagnostic	Diagnostic Information
-	0	6 byte Normal-Diagnose
0	1	16 byte Class 1 - Diagnose
1	1	63 byte Class 2 – Diagnose

Octet	Bit	Туре	Output	
1		byte	diag state 1	(profibus default)
2		byte	diag state 2	(profibus default)
3		byte	diag state 3	(profibus default)
4		byte	master address	(profibus default)
56		word	slave ident	(profibus default)
			class 1 diagnostic	
7		byte	extended diag. header, le	ength (class 1:ahex, class 2:39hex)
8		byte	alarms - unused	
9	0	bool	unused	
	1	bool	class 2 functionality on/o	ff
	2	bool	commissioning diagnost	ic on/off
	3	bool	unused	
	4	bool	reserved for future used	
	5	bool	reserved for future used	
	6	bool	reserved for manufacture	er
	7	bool	reserved for manufacture	er
			(operation status : param	neter byte 9)
10		byte	encoder type (=7 absolu	te linear encoder)
1114		unsigned 32	single turn resolution => 100000nm = 0.1mm	
516		unsigned 16	no. of distinguishable rev	volutions – unused (=0)

Octet	Bit	Туре	Output	
			class 2 diagnostic	
17	0	bool	E98 - Timeout SIO	
	1	bool	E99 - Unknown Error	
1819	0	bool	E02 - kein Ziel gefunden	
	1	bool	E04 Sender defective	
2021		word	warnings - unused (=0)	
2223		word	warnings - unused (=0)	
2425		word	profile version (e.g. 1.1 = 0110 hex)	
2627		word	software version (e.g. 1.11 = 0111 hex)	
2831		unsigned 32	d 32 operating time (of laser), in 0.1 hours	
3235		signed 32	offset value (see also output data)	
3639		signed 32	manufacture offset – unused (=0)	
4043		unsigned 32	measuring units per revolution – unused (=0)	
4447		unsigned 32	measuring range – unused (=0)	
4857		10 byte	serial number	
5859		word	reserved for future use	
6061		short	laser temperature in 0.1 °C	
6263		short	signal strength	

9. Betrieb

- ➤ Verbinden Sie die Anschlüsse für die Versorgung/Schnittstelle.
- Verbinden Sie die Profibus-Anschlüsse beziehungsweise SSI, verschrauben Sie diese fest.
- Isolieren Sie sämtliche Kabelenden, die Sie nicht benötigen, vor dem Einschalten der Versorgungsspannung. Sie vermeiden damit Kurzschlüsse.

Die Aufgabe des Anwenders ist:

- die anwendungsspezifische Verkabelung,
- die anwendungsspezifische Parametrierung des Profibus, vor allem der Slave-Adresse.
- Schalten Sie die Spannungsversorgung für den Sensor ein. Die LED Status leuchtet grün.
- Parametrieren Sie den Sensor über die RS232/RS422-Schnittstelle.
- Starten Sie die Distanzmessung.
- Richten Sie den Sensor mit Hilfe des sichtbaren Visierlasers bei der Inbetriebnahme an der Messstelle gegen das Messobjekt aus und halten Sie seine Position stabil. Das Messobjekt sollte idealerweise eine homogene, weiße Oberfläche besitzen.
- Befestigen Sie den Sensor.

Das Ausrichten des Sensors wird durch einen sichtbaren Visierlaser erleichtert. Die Sichtbarkeit des Laserstrahls auf dem Ziel ist abhängig vom Umgebungslicht und der Oberfläche des Messziels.

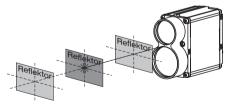


Abb. 19 Messung gegen einen Reflektor

10. Steuerbefehle

Die Sensoren lassen sich am einfachsten mit Hilfe eines PC mit RS232-Schnittstelle und einem Terminalprogramm, siehe Kap. 11., starten und parametrieren. Das Übertragungsprotokoll hat ASCII-Format.

In Vorbereitung einer Applikation kann der Sensor durch intelligente Parametrierung optimal an die Messortbedingungen und die Messaufgabe angepasst werden. Sämtliche Einstellungen bleiben bei Ausschalten des Sensors erhalten. Sie können nur durch Eingabe eines neuen Wertes oder Initialisierung der Standardparameter verändert werden.

Die Eingabe eines Kommandos ist nicht casesensitiv, das heißt es können Klein- oder Großbuchstaben verwendet werden. Der Abschluss eines zu sendenden Kommandos zum Sensor erfolgt mit dem Hexadezimalzeichen 0Dh (Carriage Return).

Bei Eingabe von Dezimalstellen muss zur Trennung ein Punkt (2Eh) verwendet werden.

Bei Eingaben von Parameterkommandos wird zwischen Setzen und Abfragen des Parameters unterschieden. Die Abfrage erfolgt über das einfache Kommando, zum Beispiel Analogausgang: QA[Enter]. Beim Setzen wird hinter das Kommando ohne Trennzeichen der neue Wert eingefügt, zum Beispiel: QA50 250[Enter]. Zwischen einzelnen Parametern steht ein Leerzeichen (0x20).

10.1 Identifizierung

Auf das Kommando ID antwortet der Sensor mit seinen Herstelldaten in der Reihenfolge Gerätetyp, Firmware-Version, Firmware-Datum, Firmware-Zeit, Gerätenummer, Herstelldatum und Herstellzeit.

Beispiel:

ILR1191 1.1.16(R) 27.03.2007 11:31 060001 11.04.2007 08:56

10.2 Betriebsarten

Das Zeichen ESC (1Bh) beendet die Datenausgabe. Der Sensor wartet nun auf einen neuen Befehl.

10.2.1 DM - Einzeldistanzmessung

Der Sensor führt genau eine Messung aus und wartet dann auf neue Anweisungen.

Die Dauer der Messung richtet sich nach der Anzahl über der zu mittelnden Messwerte, siehe Parameter SA, und der eingestellten Messfrequenz, siehe Parameter MF.

Beispiel:

- Mittelung über 5 Messwerte, SA5
- Messfrequenz: 1 Messungen pro Sekunde, MF1
- Dauer der Messung = 5 Sekunden

10.2.2 DT - Dauerdistanzmessung

Der Sensor führt eine Dauermessung aus, die durch ein entsprechendes Kommando (RS232/RS422: Escape = 0x1B) angehalten werden muss.

Die Ausgabegeschwindigkeit der Messung richtet sich nach der Anzahl über der zu mittelnden Messwerte, siehe Parameter SA, und der eingestellten Messfrequenz, siehe Parameter MF.

Beispiel:

- Mittelung über 5 Messwerte, SA5
- Messfrequenz: 50 Messungen pro Sekunde, MF50
- Ausgabegeschwindigkeit = 10 Messwerte pro Sekunde
- In der Betriebsart DT wird der Analogausgang mit jedem neuen Messwert aktualisiert. Dazwischen wird der alte Wert gehalten.

10.2.3 DF - Einzeldistanzmessung mit Fremdtriggerung

Der Sensor befindet sich in der Betriebsart DF. Bei Anliegen eines externen Triggerereignisses führt der Sensor genau eine Messung aus und wartet dann in der Betriebsart DF auf das nächste Triggerereignis.

Die Betriebsart muss durch ein entsprechendes Kommando (RS232/RS422: Escape = 0x1B) beendet werden.

Legen Sie das Triggerereignis am externen Triggereingang an, siehe Kap. 5.3.5.

Der Abstand der Einzel-Messungen richtet sich nach

- der Anzahl über der zu mittelnden Messwerte, siehe Parameter SA,
- der eingestellten Messfrequenz, siehe Parameter MF,
- und dem eingestellten Triggerdelay, siehe Parameter TD.

10.2.4 VM - Einzelgeschwindigkeitsmessung

Der Sensor führt 25 Einzelmessungen aus und berechnet daraus die Geschwindigkeit.

Die Dauer der Messung richtet sich nach

- der Anzahl über der zu mittelnden Messwerte, siehe Parameter SA,
- der eingestellten Messfrequenz, siehe Parameter MF.

Beispiel:

- Mittelung über 1 Messwert, SA1
- Messfrequenz: 50 Messungen pro Sekunde, MF50
- Dauer der Messung = ca. 0,5 Sekunden

10.2.5 VT - Dauergeschwindigkeitsmessung

Der Sensor führt eine Dauermessung von je 25 Einzelmessungen aus, die durch ein entsprechendes Kommando (RS232/RS422: Escape = 0x1B) angehalten werden muss.

Der Abstand der Einzel-Messungen richtet sich nach

- der Anzahl über der zu mittelnden Messwerte, siehe Parameter SA,
- der eingestellten Messfrequenz, siehe Parameter MF.

Beispiel:

- Mittelung über 1 Messwert, SA1
- Messfrequenz: 50 Messungen pro Sekunde, MF50
- Ausgabegeschwindigkeit = 2 Messwerte pro Sekunde
- In der Betriebsart VT liefert der Analogausgang die Distanzinformation.

10.3 Parameter

- Die Parameter werden über die serielle Schnittstelle eingestellt.
- Mit dem Abschlusszeichen 0x0D wird das Kommando zum Sensor übertragen.
- Bei Kommandos mit einem Parameter wird der Parameter direkt oder durch ein Leerzeichen (0x20) getrennt eingegeben.
- Bei Kommandos mit mehreren Parametern werden diese durch ein Leerzeichen (0x20) voneinander getrennt.

10.3.1 AS - Autostartfunktion

Format ASx [Enter]

Die Autostartfunktion legt das Verhalten des Sensors nach einem Kaltstart fest. Nach diesem führt der Sensor das Kommando automatisch aus und sendet die Daten über die serielle Schnittstelle.

Abfrage	AS
Setzen	ASx
Wertebereich	ID, ID?, DM, DT, DF, VM, VT, TP, HW, PA, MF, TD, SA, SF, MW, OF, SE, Q1, Q2, QA, BR,
Parameter x:	SD, TE, BB, AB, SC, PL, AS
Standard	ID

10.3.2 PL - Visierlaser

Format: PLx [Enter]

PLx parametriert das Verhalten x des Visierlasers.

Abfrage	PL	
Setzen	PLx	
Wertebereich	0	Aus
Parameter x	1	Ein
	2	Blinkend (2 Hz)
	3	Blinkend (5 Hz)
Standard	2	

Während der Messung wird der PL - Visierlaser automatisch deaktiviert.

10.3.3 PR – Rücksetzen auf Werkseinstellungen

Format: PR [Enter]

Setzt alle Parameter auf die Werkseinstellung zurück.

Ausgenommen ist die Baudrate.

Parameter bei Firmwareversion 1.1.16:

measure frequency[MF] 2000(max2000)hz trigger delay/level[TD] 0.00msec 0

average value[SA] 20

scale factor[SF] 1.000000

measure window[MW] -5000.000 5000.000

distance offset[OF] 0.000 error mode[SE] 1

 digital out[Q1]
 0.000 0.000 0.000 1

 digital out[Q2]
 0.000 0.000 0.000 1

 analog out[QA]
 1.000 300.000

RS232/422 baud rate[BR] 115200

RS232/422 output format[SD] dec (0), value (0)
RS232/422 output terminator[TE] ODh 0Ah (0)

SSI output format[SC] bin (0) visier pointer[PL] 2 autostart command[AS] DT

10.3.4 DR – Auslösen eines Kaltstarts

Format: DR [Enter]

Führt den Kaltstart des Sensor aus und simuliert faktisch eine Unterbrechung der Betriebsspannung. Das Kommando ist beispielsweise nützlich, wenn das Autostart-Kommando geändert wurde.

10.3.5 SF - Skalierungsfaktor

Format: SFx [Enter]

Das Kommando ermöglicht die Skalierung des auszugebenden Messwertes und des Analogsignals (Strom) durch Parametrierung eines Faktors x.

Abfrage	SF
Setzen	SFx
Wertebereich	-100.001 und 0.001 10; Auflösung: 0.000001
Parameter x	
Standard	1.000000

SF ermöglicht auch die Ausgabe des Distanzwertes in einer anderen Maßeinheit. Der Skalierungsfaktor kann auch negativ sein.

Beispiele:

Skalierungsfaktor	Ausgabe	Maßeinheit
SF1	114,123	m
SF1.0936	124,805	yard
SF3.28084	377,419	feet
SF0.3937	44,930	100 inch

10.3.6 OF - Offset

Format: OFx [Enter]

Das Kommando parametriert einen nutzerspezifischen Offset x, dieser wird zum Messwert dazu addiert.

Abfrage	OF
Setzen	OFx
Wertebereich	float32; Auflösung: 0.001
Parameter x	
Standard	0.000

Im Sensor findet keine Plausibilitätsprüfung des eingestellten Offsets statt.

10.3.7 SO - Set Offset

Format: SO [Enter]

Das Kommando führt eine Einzeldistanzmessung durch und setzt diese als -OF (Offset). SO kann nur ausgeführt werden und ist kein Parameter im eigentlichen Sinn.

Verwenden Sie das Kommando SO, um zum Beispiel relative Messungen auszuführen.

Ausgabewert [m] = Messwert - OF

Verwenden Sie das Kommando OF0, um die relative Messung zu beenden.

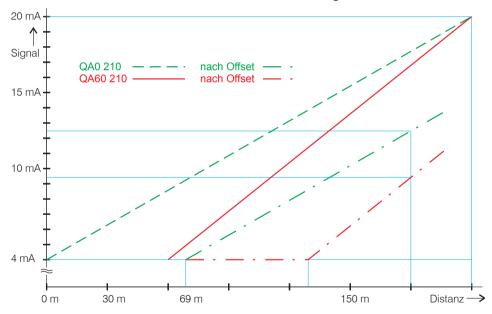


Abb. 20 Analogausgang mit Offsetverschiebung bei 69 m

10.3.8 MW - Messfenster

Format: MWx y [Enter]

Parametriert den Bereich des Messfensters, welches nur Messwerte innerhalb des Fensters ausgibt, durch Beginn x und Ende y.

Das Messfenster kann verwendet werden, zum Beispiel zur:

- Ausblendung von Störobjekten vor und hinter einem Messbereich
- Festlegung eines definierten Messbereiches

Ein Objekt, das vor oder nach dem Messfenster detektiert wird, erzeugt eine ungültige Messwertausgabe.

Abfrage	MW
Setzen	MWx y
Wertebereich	float32; Auflösung: 0.001
Parameter x	
Wertebereich	float32; Auflösung: 0.001
Parameter y	
Standard	-5000.000 5000.000

Im Sensor findet keine Plausibilitätsprüfung des eingestellten Messfensters statt.

10.3.9 SA - Mittelwert

Format: SAx [Enter]

Parametriert die Anzahl x der zu mittelnden Einzelmesswerte für eine Messung. SA steht in direkter Abhängigkeit von MF, siehe Kap. 10.3.10.

Abfrage	SA
Setzen	SAx
Wertebereich	1 30000; Auflösung: 1
Parameter x	
Standard	20

10.3.10 MF - Messfrequenz [Hz]

Format: MFx [Enter]

Parametriert die Anzahl x der auszusendenden Messwerte pro Sekunde.

Abfrage	MF
Setzen	MFx
Wertebereich	1 2000; Auflösung: 1
Parameter x	
Standard	2000

MF1000 beispielsweise bedeutet, dass 1000 Messwerte pro Sekunde gesendet werden. Die Messzeit und damit das Senden des Messergebnisses über die serielle Schnittstelle ist zusätzlich abhängig vom Parameter SA.

Datenrate = Messfrequenz / Mittelwertanzahl

Beispiele:

MF1000, SA1000: Datenrate = 1 (pro Sekunde 1 Messwert an der seriellen Schnittstelle)

MF2000, SA1000: Datenrate = 2 (pro Sekunde 2 Messwerte an der seriellen Schnittstelle)

MF2000, SA20000: Datenrate = 0,1 (alle 10 s ein Messwert an der seriellen Schnittstelle)

10.3.11 TD - Triggerverzögerung, Triggerflanke

Format: TDx y [Enter]

Parametriert das Verhalten im Fremdtriggermodus (DF).

- x ist die Verzögerung (Delay) der Auslösung einer Einzelmessung in Millisekunden.
- y ist die Flanke, auf die getriggert wird
 - 0 bedeutet das Auslösen des Triggers bei abfallender Flanke (von High nach Low)
 - 1 bedeutet das Auslösen des Triggers bei ansteigender Flanke (von Low nach High)

Abfrage	TD
Setzen	TDx y
Wertebereich x	0 300.00 msec; Auflösung: 0.01 msec
Wertebereich y	0 oder 1
Standard	0.00 msec 0

10.3.12 SE - Error Mode

Format: SEx [Enter]

Parametriert das Verhalten x der Schaltausgänge Q1 und Q2 sowie des Analogausgangs QA bei Fehlmessungen sowie den Zustand nach Ausführen einer Einzeldistanzmessung.

Abfrage	SE	SE			
Setzen	SEx	SEx			
Wertebereich	Parameter x	Q1, Q2 (z=0)	Q1, Q2 (z=1)	QA	
	0	Letzter Wert	Letzter Wert	Letzter Wert	
	1	High	Low	3 mA	
	2	Low	High	21 mA	
Standard	1				

Im Sensor findet keine Plausibilitätsprüfung des eingestellten Error Mode statt.

10.3.13 Q1, Q2 - Schaltausgang

Format: Q1w x y z bzw. Q2w x y z [Enter]

Q1/Q2 parametriert das Verhalten der Schaltausgänge Q1 oder Q2, siehe Kap. 5.3.4.

Parametriert wird der Beginn w des Messbereiches, bei dem der Ausgang schaltet, die Länge x des Messbereiches, die Hysterese y sowie das Logikverhalten z.

Abfrage	Q1/Q2	
Setzen	Q1w x y z oder Q2w x y z	
Wertebereich	float32; Auflösung: 0.001	HIGH
Parameter w		Q_1, Q_2 $Z = 1$
Wertebereich	float32; Auflösung: 0.001	Low
Parameter x		
Wertebereich	float32; Auflösung: 0.001	HIGH — — — — — — — — — — — — — — — — — — —
Parameter y		$\overline{Q}_1, \overline{Q}_2$ $z = 0$
Wertebereich	0 oder 1	LOW
Parameter z		X X
Standard	1.000 300.000	

Im Sensor findet keine Plausibilitätsprüfung der Einstellungen von QA statt.

10.3.14 QA - Analogausgang

Format: QAx y [Enter]

Parametriert das Verhalten des Analogausgangs QA, siehe Kap. 5.3.2.

Der Parameter SF beeinflusst den Analogausgang.

Es werden das untere Limit x und das obere Limit y des Strombereiches von 4 bis 20 mA eingestellt. Der Skalierungsfaktor SF, siehe Kap. 10.3.5, beeinflusst die Limits nicht. Das untere Limit kann kleiner aber auch größer als das oberer Limit sein, dementsprechend kehrt sich der Strombereich um, siehe Kap. 5.3.2.

Eingaben von gleichen Limits werden ignoriert und nicht übernommen.

Abfrage	QA
Setzen	QAx y
Wertebereich	float32; Auflösung: 0.001
Parameter x	
Wertebereich	float32; Auflösung: 0.001
Parameter y	
Standard	1.000 300.000

Im Sensor findet keine Plausibilitätsprüfung der Einstellungen von QA statt.

10.3.15 BR - Baudrate

Format: BRx [Enter]

Das Kommando ermöglicht die Umstellung der seriellen Baudrate x.

Nach Änderung der Baudrate ist kein Kaltstart zwingend notwendig.

Abfrage	BR
Setzen	BRx
Wertebereich	9600, 19200, 38400, 57600, 115200, 230400 oder 460800
Parameter x	
Standard	115200

10.3.16 SD – Ausgabeformat serielle Schnittstelle

Format: SDx y [Enter]

Parametriert das Format x und Inhalt y der Ausgabe der seriellen Schnittstelle bei Distanz- und Geschwindigkeitsmessungen.

Das Übertragungsformat kann

- dezimal (ASCII),
- hexadezimal (ASCII) und
- binär sein, siehe Kap. 6.3.

Der Inhalt ermöglicht neben der Messwertausgabe zusätzlich auch die Signalstärke und/oder Temperatur auszugeben.

Abfrage	SD	
Setzen	SDx y	
Wertebereich	0	dezimal
Parameter x	1	hexadezimal
	2	binär
Wertebereich	0	Messwert
Parameter y	1	Messwert, Signalstärke
	2	Messwert, Sensortemperatur
	3	Messwert, Signalstärke, Sensortemperatur
Standard	0 0	

Beispiel: Der Sensor soll den Messwert und die Signalstärke dezimal übertragen.

Kommando an den Sensor: SD0 1.

Der Wert der Signalstärke gibt, analog zur LED "Target", Auskunft über die Reflexionseigenschaften des Messobjektes.

Signalstärke	LED Target	Zustand	
	aus	kein Signal	
< 600	rot, blinkend	sehr schwaches Signal	
600 1000	rot	schwaches Signal	
1000 1500	gelb	Signal vorhanden	
1500 3400	grün	gutes Signal	
3400 6000	grün, blinkend	sehr gutes Signal	

10.3.17 TE - Abschlusszeichen serielle Schnittstelle

Format: TEx [Enter]

Parametriert das Abschlusszeichen der seriellen Schnittstelle bei Distanz- und Geschwindigkeitsmessungen.

Voraussetzung ist das Ausgabeformat SD0 y, siehe Kap. 10.3.16.

Abfrage	TE		
Setzen	TEx		
Wertebereich	x	Hexcode	Beschreibung
Parameter x	0	0x0D0A	CR LF
	1	0x0D	CR
	2	0x0A	LF
	3	0x02	STX
	4	0x03	ETX
	5	0x09	Tabulator
	6	0x20	Space
	7	0x2C	Komma
	8	0x3A	Doppelpunkt
	9	0x3B	Semikolon
Standard	0x0D0A		

10.3.18 SC - Format SSI

Format: SCx [Enter]

Parametriert das Format x des SSI-Codes, siehe Kap. 7.

Abfrage	SC
Setzen	SCx
Wertebereich	0 oder 1
Parameter x	
Standard	0

10.3.19 TP - Sensorinnentemperatur

Format: TP [Enter]

TP fragt die Innentemperatur des Sensors in °C ab.

Der Sensor gibt seine Geräteinnentemperatur über die serielle Schnittstelle sowie über den Profibus aus. Die Ausgabe erfolgt in °C.

10.3.20 PA – Anzeige aller Parameter

Format: PA [Enter]

Es wird eine Liste aller Parameter über die serielle Schnittstelle ausgegeben.

Beispiel:

measure frequency[MF] 2000(max2000)hz trigger delay/level[TD] 0.00msec 0 average value[SA] 20 scale factor[SF] 1.000000

measure window[MW] -5000.000 5000.000

distance offset[OF] 1.000 error mode[SE] 1

 digital out[Q1]
 20.000 10.000 1.000 1

 digital out[Q2]
 1.000 30.000 0.500 1

analog out[QA] 1.000 300.000

RS232/422 baud rate[BR] 115200

RS232/422 output format[SD] dec (0), value (0)
RS232/422 output terminator[TE] 0Dh 0Ah (0)
SSI output format[SC] bin (0)
visier pointer[PL] 2

10.3.21 HW - Hardwarediagnose

Format HW [Enter]

autostart command[AS]

Es wird eine sensorspezifische Liste von Kennwerten und Messgrößen ausgegeben.

DT

11. Hyperterminal

Mit dem Standardprogramm HyperTerminal® können Sie Daten über die serielle Schnittstelle RS232 empfangen und den Sensor konfigurieren. Sie benötigen dazu lediglich eine freie serielle Schnittstelle (zum Beispiel COM1) an Ihrem PC und die in den vorhergehenden Kapiteln beschriebenen Steuerkommandos.

In industriellen Anwendungen ist die RS232-Schnittstellen weit verbreitet. Verwenden Sie einen geeigneten USB TO RS232 Konverter, falls Ihr PC/Notebook nur mit USB-Schnittstellen ausgestattet ist.

Vorbereitung Messbetrieb

- Verbinden Sie den Controller mit einem freien seriellen Port am PC
- Starten sie das Programm HyperTerminal® (Menü Start > Programme > Zubehör > Kommunikation > HyperTerminal)
- Geben Sie einen Namen für die Verbindung an und klicken Sie auf "OK".

Abb. 21 Verbindungsaufbau mit dem Programm HyperTerminal®

Wählen Sie die Schnittstelle aus und klicken Sie auf "OK"

Abb. 22 Definition der seriellen Schnittstelle

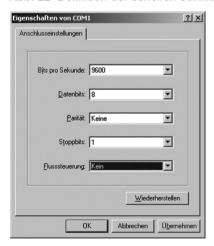


Abb. 23 Definition der Schnittstellenparameter

Geben Sie nachfolgende Schnittstellenparameter an:

Bitrate: 115.200 Baud, Datenformat: 8 Datenbits,

Parität: keine, Start/Stopbit: 1,

Flusssteuerung: Nein

- Klicken Sie abschließend auf "OK".
- Tippen Sie das Kommando "PA" ein und drücken Sie die ENTER-Taste.

Der Sensor liest die Parameter über die serielle Schnittstelle aus, siehe Abb. 22. Mit Drücken der "ESC"-Taste wird die Datenausgabe beendet und der Sensor wartet auf weitere Anweisungen.

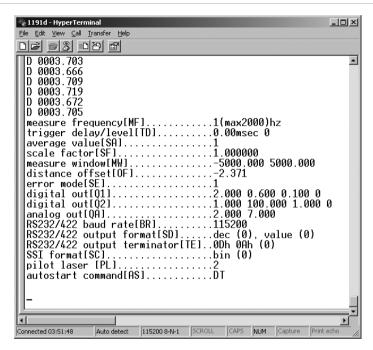


Abb. 24 Benutzeroberfläche im Terminal-Betrieb

- Die Anzeige des eingegebenen Befehls erfolgt nur, wenn die Funktion "Lokales Echo" aktiviert wurde. Diese befindet sich im Menü Datei > Eigenschaften > Reiter "Einstellungen" > ASCII Setup.
- Speichern Sie, wenn noch nicht geschehen, die Konfiguration des Hyperterminals. Dies hat den Vorteil, dass Sie nicht jedes Mal die Schnittstelle neu konfigurieren müssen.

12. Funktionsstörungen / Fehlermeldungen

12.1 Funktionsstörungen

Fehler	Ursache	Behebung	
Keine Daten über RS232	Fehlerhafte Konfiguration der	Schnittstellenkonfiguration prüfen	
oder RS422	Schnittstelle	Schillestellerikorniguration prulen	
Gerätefehler	Hardwarenrablema	Sensor zur Reparatur einschicken, techni-	
(Ext. Diagnose)	Hardwareprobleme	schen Support kontaktieren	

12.2 Funktionshinweise

Code	Ursache	Behebung
E02	Kein Ziel	Messabstand beachten
E04	Laser defekt Sensor zur Reparatur einschicken,	
		technischen Support kontaktieren

12.3 Fehlermeldungen

Fehlermeldung	Maßnahme	Behebung
Rote Status-LED der	Fehlermeldung über RS232- oder	Sensor zur Reparatur einschicken,
Statusanzeige leuchtet	RS422-Schnittstelle auslesen	technischen Support kontaktieren

13. Reinigung

- Entfernen Sie Staub auf den optischen Glasflächen (Sende-, Empfangsoptik) mit einem Blasepinsel.
- Wischen Sie die optischen Oberflächen nicht mit Reinigern, die organische Lösungsmittel enthalten, ab.
- Wenden Sie sich bitte bei hartnäckigen Verschmutzungen an den Hersteller.

HINWEIS

Vermeiden Sie die Verwendung von Lösungsmitteln zur Reinigung des Sensors.

> Beschädigung des Sensors

Das Gerät darf nicht geöffnet werden. Die Schrauben am Gerät dürfen nicht gelöst werden.

> Beschädigung des Sensors

14. Haftung für Sachmängel

Alle Komponenten des Gerätes wurden im Werk auf die Funktionsfähigkeit hin überprüft und getestet. Sollten jedoch trotz sorgfältiger Qualitätskontrolle Fehler auftreten, so sind diese umgehend an MICRO-EPSILON Eltrotec oder den Händler zu melden.

Die Haftung für Sachmängel beträgt 12 Monate ab Lieferung. Innerhalb dieser Zeit werden fehlerhafte Teile, ausgenommen Verschleißteile, kostenlos instandgesetzt oder ausgetauscht, wenn das Gerät kostenfrei an MICRO-EPSILON Eltrotec eingeschickt wird. Nicht unter die Haftung für Sachmängel fallen solche Schäden, die durch unsachgemäße Behandlung oder Gewalteinwirkung entstanden oder auf Reparaturen oder Veränderungen durch Dritte zurückzuführen sind. Für Reparaturen ist ausschließlich MICRO-EPSILON Eltrotec zuständig.

Weitergehende Ansprüche können nicht geltend gemacht werden. Die Ansprüche aus dem Kaufvertrag bleiben hierdurch unberührt. MICRO-EPSILON Eltrotec haftet insbesondere nicht für etwaige Folgeschäden. Im Interesse der Weiterentwicklung behalten wir uns das Recht auf Konstruktionsänderungen vor.

15. Service, Reparatur

Bei einem Defekt am Sensor senden Sie bitte die betreffenden Teile zur Reparatur oder zum Austausch unter Angabe der angewandten Einsatzbedingungen (Applikationen, Anschlussbedingungen, Umweltbedingungen) ein.

Bei Störungen, deren Ursachen nicht eindeutig erkennbar sind, senden Sie bitte immer das gesamte Messsystem an: MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 73037 Göppingen / Deutschland

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 e-mail info@micro-epsilon.de www.micro-epsilon.de

16. Außerbetriebnahme, Entsorgung

Entfernen Sie das Versorgungs- und Ausgangskabel am Sensor.

Durch falsche Entsorgung können Gefahren für die Umwelt entstehen.

Entsorgen Sie das Gerät, dessen Komponenten und das Zubehör sowie die Verpackungsmaterialien entsprechend den einschlägigen landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des Verwendungsgebietes.

Anlage

A 1 Optionales Zubehör

PC1100-3/RS232 Versorgungs-/Ausgangskabel-RS232, 3 m lang

PBC1100-I/O-5 Profibus Ein- & Ausgangskabel, 5 m lang

PBC1100-l-5 Profibus Eingangskabel, 5 m lang
PBC1100-l-10 Profibus Eingangskabel, 10 m lang
PBC1100-O-5 Profibus Ausgangskabel, 5 m lang
PBC1100-O-10 Profibus Ausgangskabel, 10 m lang

PBFC1100 Profibus Buchse
PBMC1100 Profibus Stecker

PBLR1100 Profibus Abschlusswiderstand

ILR-M-PB/USB Profibus/USB-Modul + Servicesoftware

ILR-MP1191 Montageplatte für ILR1191
ILR-AA1191 Ausrichthilfe für ILR1191

ILR-PT1191 Staubtubus, 100 mm, für ILR1191

A 2 Werkseinstellungen

Messfrequenz [MF] 2000 Hz

Triggerverzögerung, Flanke [TD] 0.0 msec 0

Mittelwertanzahl [SA] 20

Skalierungsfaktor [SF] 1

Messfenster [MW] -5000.0 ... 5000.0

Offset [OF] 0.0

Error Mode [SE] 1

Schaltausgang [Q1] 0.0 0.0 0.0 1

Schaltausgang [Q2] 0.0 0.0 0.0 1

Analogausgang [QA] 1.0 300.0

Übertragungsrate RS232/422 [BR] 115200

Ausgabeformat RS232/422 [SD] 0 0

Abschlusszeichen RS232/422 [TE] 0

Format SSI [SC] 0

Visierlaser [PL] 2

Autostart [AS] DT

MICRO-EPSILON Eltrotec GmbH

Manfred-Wörner-Straße 101 · 73037 Göppingen / Deutschland

Tel. +49 (0) 7161 / 98872-300 · Fax +49 (0) 7161 / 98872-303

eltrotec@micro-epsilon.de · www.micro-epsilon.de

X9750187-A051069SWE

© MICRO-EPSILON Eltrotec

