

Betriebsanleitung confocalDT 2421/2422/2465/2466

IFC2421 IFC2422 IFC2421MP IFC2422MP IFC2465 IFC2466 IFS2402-0,5 IFS2402-1,5 IFS2402/90-1,5 IFS2402-4 IFS2402/90-4 IFS2402-10 IFS2402/90-10 IFS2403-0,4 IFS2403-1,5 IFS2403/90-1,5 IFS2403-4 IFS2403/90-4 IFS2403/90-10 IFS2403/90-10 IFS2404-2 IFS2404/90-2 IFS2404/90-2(001) IFS2405-0,3 IFS2405-1 IFS2405-3 IFS2405-6 IFS2405/90-6 IFS2405-10 IFS2405-28 IFS2405-28/VAC(001) IFS2405-30 IFS2406-2,5/VAC(003) IFS2406/90-2,5/VAC(001) IFS2406-3 IFS2406-3/VAC(001) IFS2406-10 IFS2406-10/VAC(001) IFS2407-0,1 IFS2407-0,1 IFS2407-0,3 IFS2407-0,8 IFS2407-1,5 IFS2407-3 Konfokal-chromatische Abstands- und Dickenmessung

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15

94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.de

confocalDT 2421 confocalDT 2422 confocalDT 2465 confocalDT 2466

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Inhalt

1 .	Sicherheit Verwendete Zeichen	9 9
1.2	Warnhinweise	
1.3	Hinweise zur Produktkennzeichnung	9
	1.3.1 CE-Kennzeichnung	
	1.3.2 UKCA-Kennzeichnung	
1.4	Bestimmungsgemäßes Limfeld	10 10
1.5	Destiminungsgemübes omleid	
2.	Funktionsprinzip, Technische Daten	
2.1	Kurzbeschreibung	
2.2	Messprinzip	
2.3	Begrimsdefinition	
2.4	Sansoran	∠۱ 12
2.6	Technische Daten	
•		
3. 3.1	Lieferumfang	I <i>I</i> 17
3.2	Lagerung	
4.	Montage	
4.1	Controller IFC2421/2422/2403/2400	۱۵ 10
4.3	I FDs am Controller	
4.4	Elektrische Anschlüsse Controller	
	4.4.1 Anschlussmöglichkeiten	
	4.4.2 Handhabung der steckbaren Schraubklemmen	
	4.4.3 Massekonzept, Schirmung	
	4.4.4 versorgungsspannung (Power)	
	4.4.5 H0422	21 22
	4.4.7 Analogausgang	
	4.4.8 Schaltausgänge (Digital I/O)	
	4.4.9 Synchronisation (Ein-/Ausgänge)	
	4.4.10 Triggerung	
4 5	4.4.11 Encodereingange	
4.5	Sensoren	
4.0	4 6 1 Abmessungen Serie IFS2402	29
	4.6.2 Abmessungen Serie IFS2403	
	4.6.3 Abmessungen Serie IFS2404	
	4.6.4 Abmessungen Serie IFS2405	
	4.6.5 Abmessungen Serie IFS2406	
	4.6.6 Abmessungen Serie IFS2407	
	4.6.7 Messbereichsanlang	
	4.6.8.1 Allgemein	
	4.6.8.2 Sensoren der Reihe IFS2402	
	4.6.8.3 Sensoren der Reihe IFS2403	
	4.6.8.4 Sensoren der Reihe IFS2405, IFS2406 und IFS2407	
	4.6.8.5 Sensoren der Reihe IFS2404 und IFS2407	
	4.6.8.6 Justierbarer Montageadapter JMA-XX	
5.	Betrieb	
5.1	Inbetriebnahme	
5.2	5.2.1 Voraussetzungen	
	5.2.1 Volausseizungen	
5.3	Sensor auswählen	
5.4	Taste Multifunction	
5.5	Dunkelabgleich	
5.6	Messobjekt platzieren	
5.7	Auswani Messkonfiguration	
5.0	Signalgualität	
5.10	Abstandsmessung mit Anzeige auf der Webseite	
5.11	Einstellungen speichern/laden	
6	Erweiterte Einstellungen	F0
0. 6.1	Erweiterte Emstenungen	53 ະຈ
0.1	6.1.1 Synchronisation	
	6.1.2 Encodereingänge	
	6.1.2.1 Interpolation	
	6.1.2.2 Maximaler Wert	
	6.1.2.3 Wirkung der Referenzspur	
	6.1.2.4 Setzen auf Wert	
	613 Abschlusswiderstand	

6.2	Messwerta	aufnahme	55
	0.2.1 6.2.2	Zähler zurücksetzen	22 55
	623	Triggerung Datenaufnahme	56
	0.2.0	6.2.3.1 Allgemein	56
		6.2.3.2 Triggerung der Messwertaufnahme	57
	6.0.4	6.2.3.3 Triggerzeitdifferenz	57
	0.2.4	Maskierung Auswenebereich	50 50
	6.2.6	Belichtunasmodus	60
	6.2.7	Peaktrennung	61
		6.2.7.1 Erkennungsschwelle	61
	609	6.2.7.2 Peakmodulation	61
	0.2.0 629	Materialauswahl	03 64
6.3	Signalvera	rbeitung	65
	6.3.1	Ausreißerkorrektur	65
	6.3.2	Rechnung	66
		6.3.2.1 Datenquelle, Parameter, Rechenprogramme	60
		6.3.2.3 Messwertmittelung	68
6.4	Nachbear	beitung	71
	6.4.1	Rechnung	71
		6.4.1.1 Datenquelle, Parameter, Rechenprogramme	71
		6.4.1.2 Definitionen	72
	6.4.2	Nullsetzen. Mastern	73
	6.4.3	Statistik	74
	6.4.4	Triggerung Datenausgabe	75
		6.4.4.1 Allgemein	/5 76
	645	Datenreduktion Ausgabe-Datenrate	76
	6.4.6	Fehlerbehandlung (Letzten Wert halten)	76
6.5	Ausgänge		77
	6.5.1	Digitale Schnittstellen	77
		6512 Ethernet	77
		6.5.1.3 Datenausgabe RS422, Ethernet	78
	6.5.2	Analogausgang	79
		6.5.2.1 Berechnung Messwert aus Stromausgang	80
		6.5.2.3 Verhalten Abstandswert und Analogausgang	81
	6.5.3	Fehlerausgang, Schaltausgänge	82
		6.5.3.1 Belegung der Schaltausgänge (Digital I/O)	82
		6.5.3.2 Grenzwerteinstellung	82
	6.5.4	Datenausgabe. Auswahl Schnittstelle.	83
6.6	Systemein	stellungen	83
	6.6.1	Einheit Webinterface	83
	0.0.2 6.6.3	Tasterisperre Laden und Sneichern	00 83
	6.6.4	Zugriffsberechtigung	83
	6.6.5	Controller rücksetzen	84
	6.6.6	Lichtquelle	84
	6.6.7		84
7.	Dickenm	essung	85
7.1	Einseitig, t	ransparentes Messobjekt	85
	7.1.1	Voraussetzung	85
	7.1.2	Materialauswahl	00 85
	7.1.4	Videosignal	85
	7.1.5	Signalverarbeitung	86
7.0	7.1.6	Messwertanzeige	87
1.2	Zweiseitig	e Dickenmessung	87 87
	7.2.2	Preset	88
	7.2.3	Videosignal	88
	7.2.4	Nachbearbeitung	88
	1.2.0	Messweitelizeige	09
8.	Fehler, R	eparatur	90
8.1	Kommunil	kation Webinterface	90
8.2	Wechsel d	les Sensorkabels an den Sensoren IFS2405 und IFS2406	90
0.3	831	IFS2405/IFS2406	90 90
	8.3.2	IFS2406/90-2,5	91
٥	Software		22
э.	Sonware	-opuale	92
10.	Software	eunterstützung mit MEDAQLib	92
11.	Haftungs	ausschluss	93

12.	Service	, Reparatu	,	. 93
13.	Außerbe	etriebnahm	e, Entsorgung	. 94
	Anhang			. 95
A 1	Optiona	les Zubeh	ör. Serviceleistungen	. 95
A 1.1	Optional	es Zubehör	-,	95
A 1.2	Servicele	istungen		96
A 2	Werkse	instellunge	n	. 96
A 3	Justiert	oarer Monta	ageadapter JMA-xx	. 97
A 3.1	Funktion	enk	ompatibilität	97
A 3.2 A 3.3	Montage	elesligulig, N	טוויףמושווומנ	97
A 3.4	Maßzeich	nung Monta	geadapter	97
A 3.5	Orthogor	nale Ausricht	ung des Sensors	98
A 4	Reinige	n optische	r Komponenten	. 99
A 4.1	Verschm	utzungen		99
A 4.2 A 4.3	Schutzsc	heihe Senso	r	100
A 4.4	Schnittst	elle Controlle	r Sensorkabel	101
A 4.5	Schnittst	elle Sensorka	abel Sensor	102
A 4.6	Vorbeuge	ende Schutzi	naßnahme	102
A 5	ASCII-K	ommunika	tion mit Controller	103
A 5.1	Allgemeii	n		103
A 5.2	Ubersich	t Betehle		103
A 5.5	Aligemen A 5 3 1	Allgemein		107
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 5.3.1.1	Hilfe	107
		A 5.3.1.2	Controllerinformation	107
		A 5.3.1.3	Antworttyp	107
		A 5.3.1.4 A 5 3 1 5	Parameterubersicnt	107
		A 5.3.1.6	Terminierungswiderstand an Svnc/Trig	108
		A 5.3.1.7	Sensor booten	108
		A 5.3.1.8	Zähler zurücksetzen	108
	A 5.3.2	Webinterfa	Ce Spracha dar Wahasita	108
		A 5.3.2.1 A 5.3.2.2	Maßeinheit der Webseite	108
	A 5.3.3	Benutzerek	pene	109
		A 5.3.3.1	Wechsel der Benutzerebene	109
		A 5.3.3.2	Wechsel in die Benutzerebene	109
		A 5.3.3.4	Einstellen des Standardnutzers	109
		A 5.3.3.5	Kennwort ändern	109
	A 5.3.4	Sensor		109
		A 5.3.4.1	Info zu Kalibriertabellen	109
		A 5.3.4.2	Sensorinformationen	110
		A 5.3.4.4	Dunkelabgleich	110
		A 5.3.4.5	Warnschwelle bei Verschmutzung	110
	A E 2 E	A 5.3.4.6	LED	110
	A 5.5.5	A 5.3.5.1	Triggerquelle auswählen	110
		A 5.3.5.2	Ausgabe von getriggerten Werten, mit/ohne Mittelung	110
		A 5.3.5.3	Triggerart	111
		A 5.3.5.4	Aktivpegel des Triggereinganges	111
		A 5 3 5 6	Anzahl der auszugebenden Messwerte	111
		A 5.3.5.7	Pegelauswahl Triggereingang Trigln	111
		A 5.3.5.8	Schrittweite Encodertriggerung	111
		A 5.3.5.9	Minimum Encodertriggerung	111
	A 5 3 6	A 5.3.5.10 Encoder	Maximum Encoderinggerung	112
	// 0.0.0	A 5.3.6.1	Encoder-Interpolationstiefe	112
		A 5.3.6.2	Wirkung der Referenzspur	112
		A 5.3.6.3	Encoderwert	112
		A 5.3.6.4	Encouerwert per Sonware setzen	112
		A 5.3.6 6	Maximaler Encoderwert	112
	A 5.3.7	Schnittstell	en	113
		A 5.3.7.1	Ethernet IP-Einstellungen	113
		A 5.3.7.2	Einsteilung zur Etnernet-Messwertubertragung	113
		A 5.3.7.3 A 5 3 7 4	Einstellung der RS422-Baudrate	113
		A 5.3.7.5	Umschaltung Ethernet / EtherCAT	113

A 5.3.8	Parameterverwaltung, Einstellungen laden / Speichern	114
	A 5.3.8.1 Verbindungseinstellungen laden / speichern	114
	A 5.3.8.2 Geänderte Parameter anzeigen	114
	A 5.3.8.3 Export von Parametersätzen in PC	114
	A 5.3.8.4 Import von Parametersatzen aus PC	114
	A 5.3.8.5 Werkseinstellungen.	114
A E 2 O	A 5.3.8.6 Messeinstellungen bearbeiten, speichern, anzeigen, loschen	110
A 5.5.9	Messulig — Meakanzahl —	116
	A 5.3.9.2 Peakauswahl	116
	A 5.3.9.3 Anzahl Peaks und Ein-/Ausschalten der Brechzahlkorrektur.	116
	A 5.3.9.4 Belichtungsmode	116
	A 5.3.9.5 Messrate	116
	A 5.3.9.6 Belichtungszeit	117
	A 5.3.9.7 Maskierung des Auswertebereichs	117
	A 5.3.9.8 Mindestschweile Peakerkennung	117
	A 5.3.9.9 Peakmodulation	11/
A 5.3.10		110
	A 5.3.10.1 Material auswählen	118
	A 5.3.10.3 Material auswaller	118
	4 5 3 10 4 Materialtabelle editieren	119
	A 5.3.10.5 Löschen eines Materials	119
	A 5.3.10.6 Materialeinstellungen Mehrschichtmessung	119
A 5.3.11	Messwertbearbeitung	120
	A 5.3.11.1 Ausreißerkorrektur	120
	A 5.3.11.2 Statistikberechnung	120
	A 5.3.11.3 Liste Statistiksignale	120
	A 5.3.11.4 HUCKSetzen der Stätistikberechnung.	120
	A 5.3.11.5 Auswahi Statistiksiginal	120
	A 5.3.11.7 Liste der möglich zu naranetrisierenden Signale	120
	4.5.3.11.8 Parametrisieren der Mastersionale	121
	A 5.3.11.9 Liste möglicher Signale für das Mastern	121
	A 5.3.11.10 Mastern / Nullsetzen	121
	A 5.3.11.11 Beispiel Mastern	121
	A 5.3.11.12 Berechnung im Kanal	123
	A 5.3.11.13 Liste möglicher Berechnungssignale	123
	A 5.3.11.14 Zweipunktskalierung Datenausgänge	123
A 5.3.12		124
	A 5.3.12.1 Auswalli Digitalausgalig	124
	A 5.3.12.2 Ausgabe Date in ale	124
	A 5.3.12.4 Fehlerbehandlung	124
A 5.3.13	Auswahl der auszugebenden Messwerte	125
	A 5.3.13.1 Allgemein	125
	A 5.3.13.2 Datenauswahl für Ethernet	125
	A 5.3.13.3 Liste der mögliche Signale für Ethernet	125
	A 5.3.13.4 Liste der ausgewahlten Signale, Reihenfolge uber Ethernet	125
	A 5.3.13.5 Datenauswani tur H5422	125
	A 5.3.13.7 Liste der nusgewählten Signale Reihenfolge über RS422	120
A 5 3 14	Schaltsränge	126
71010111	45.3.14.1 Error-Schaltausgänge	126
	A 5.3.14.2 Setzen des auszuwertenden Signales	126
	A 5.3.14.3 Liste der möglichen Signale für den Errorausgang	126
	A 5.3.14.4 Setzen der Grenzwerte	126
	A 5.3.14.5 Setzen des Wertes	126
	A 5.3.14.6 Schaltverhalten der Fehlerausgange	126
A 5.3.15		127
	A 5.3.15.1 Datelladswalli	127
	4.5.3.15.2 Liste del moglichen Signale fui dell'Analogausgang	127
	45.3.15.4 Einstellung der Skalierung des DAC	127
	A 5.3.15.5 Einstellung des Skalierungsbereiches	127
A 5.3.16	Tastenfunktionen	128
	A 5.3.16.1 Mehrfunktionstaste	128
	A 5.3.16.2 Signalauswahl für Mastern mit Multifunktionstaste	129
Manaa	A 5.3.16.3 lastensperre	129
	ruinat	130
A 0.4.1 Δ 5 1 0	Nideosianal	130
A 5 4 3	Relichtungszeit	131
A 5.4 4	Encoder	131
A 5.4.5	Messwertzähler	131
A 5.4.6	Zeitstempel	131
A 5.4.7	Messdaten (Abstände und Intensitäten)	132
A 5.4.8	Triggerzeitdifferenz	132
A 5.4.9	Differenzen (Dicken)	132
A 5.4.10	Statistikwerte	132
A 5.4.11	reaksymmetrie	132

A 5.4

A 5.5	Mess-Dat	enformate		133
	A 5.5.1	Datenforma	at RS422-Schnittstelle	133
		A 5.5.1.1	Videodaten	133
		A 5.5.1.2	Messwerte	
	A 5.5.2	Messdaten	übertragung an einen Messwertserver über Ethernet	135
		A 5.5.2.1	Allgemein	135
		A 5.5.2.2	Messwertframe	136
		A 5.5.2.3	Beispiel	
		A 5.5.2.4	Fehlercodes Ethernet-Schnittstelle	
	A 5.5.3	Ethernet Vi	deosignalubertragung	
A 5.0	wam- un		Jungen	
A 6	EtherC/	T-Dokume	ntation	140
A 6.1	Allgemeir			140
A 6.2	Wechsel	Ethernet Eth	erCAT	
A 6.3	Einleitung			
	A 6.3.1	´ Struktur vo	n EtherCAT®-Frames	140
	A 6.3.2	EtherCAT®)-Dienste	
	A 6.3.3	Adressierve	erfahren und FMMUs	141
	A 6.3.4	Sync Mana	ger	
	A 6.3.5	EtherCAI-2		
	A 6.3.6	CANopen l	JDer EtnerCAI	
	A 0.3.7	Prozessoal	en PDO-Mapping	143
A 6 /	CoF - Ot	Jelviceual	nie	1/1/
A 0. 4		Kommunik	ationssnezifische Standard-Obiekte	144
	710.111	A 6.4.1.1	Übersicht	
		A 6.4.1.2	Objekt 1001h: Gerätetvp	
		A 6.4.1.3	Objekt 1008h: Hersteller-Gerätename	144
		A 6.4.1.4	Objekt 1009h: Hardware-Version	
		A 6.4.1.5	Objekt 100Ah: Software-Version	144
		A 6.4.1.6	Objekt 1018h: Geräte-Identifikation	144
		A 6.4.1.7	TxPDO Mapping	
		A 6.4.1.8	Objekt 1C00h: Synchronmanagertyp	
		A 6.4.1.9	Objekt 1C12h: RXPDO Assign	147
		A 0.4.1.10 A 6 / 1 11	Objekt 1C33h: Synchronmanager Eingangsparameter	1/18
	A 642	Herstellers	nezifische Abiekte	140
	A 0.4.2	A 6 4 2 1	Übersicht	149
		A 6.4.2.2	Objekt 2001h: User level	
		A 6.4.2.3	Objekt 2005h: Controller-Informationen (weitere)	151
		A 6.4.2.4	Objekt 2011h: Korrektur, Kanal 1	151
		A 6.4.2.5	Objekt 2020h: Laden, Speichern, Werkseinstellung	152
		A 6.4.2.6	Objekt 2021h: Preset	152
		A 6.4.2.7	Objekt 2022h: Messeinstellung	152
		A 6.4.2.8	Objekt 203Fh: Sensorfehler	
		A 6.4.2.9	Objekt 2101n: Reset	
		A 0.4.2.10 A 6 4 2 11	Objekt 21051. Werkseinstellungen	153
		A 6 4 2 12	Objekt 2133h: LED-Lichtquelle Kanal 1	153
		A 6.4.2.12	Objekt 2141h: Videosignal anfordern	
		A 6.4.2.14	Objekt 2142h: Videosignal freigeben	
		A 6.4.2.15	Objekt 2150h: Sensor Kanal 1	154
		A 6.4.2.16	Objekt 2152h: Sensorauswahl Kanal 1	154
		A 6.4.2.17	Objekt 2156h: Mehrschichtoptionen Kanal 1	154
		A 6.4.2.18	Objekt 2161h: Peakauswahl Kanal 1	154
		A 6.4.2.19	Objekt 2162h: Peakoptionen Kanal 1	
		A 6.4.2.20	Objekt 2183h: Ausreiberkorrektur Kanal 1	
		A 0.4.2.21	Objekt 21 BUN: Digitale Schnittstelle	150
		A 6 4 2 23	Objekt 21000: Fthernet	156
		A 6 4 2 24	Objekt 21D0h: Analogausgang	156
		A 6.4.2.25	Objekt 21F3h: Schaltausgang 1	
		A 6.4.2.26	Objekt 2250h: Belichtungsmödus Kanal 1	157
		A 6.4.2.27	Objekt 2251h: Messrate	158
		A 6.4.2.28	Objekt 24A0h: Keylock	158
		A 6.4.2.29	Objekt 24A2h: Taster Multifunction	158
		A 6.4.2.30	Objekt 25A0h: Encoder	159
		A 6.4.2.31	Objekt 2/11h: Maskierung des Auswertebereiches Kanal 1	
		A 0.4.2.32	Objekt 200011. Waterialiniormation	160
		A 0.4.2.33	Objekt 2803h: Vorbandene Materialien	160
		Δ 6 1 2 25	Objekt 200011. Voltialiuelle ivialellaliell	161
		A 6 4 2 36	Objekt 2A00h: Mastern	161
		A 6.4.2 37	Objekt 2A10h: Statistik	
		A 6.4.2.38	Objekt 2C00h: Messwertberechnung Kanal 1	
		A 6.4.2.39	Objekt 2CBFh: Sys Signals	
		A 6.4.2.40	Objekt 2E00: Benutzersignale	164
A 6.5	Mappable	e Objects - F	Prozessdaten	165
A 6.6	Fehlerco	des für SDO-	Services	166
A 6.7	Oversam	pling		167

A 6.8	Kalkulation	169
	A 6.8.1 Einstellen eines Filters	169
	A 6.8.2 Dicken-Berechnung	169
	A 6.8.3 Kanal Verrechnung	170
A 6.9	Operational Modes	170
	A 6.9.1 Free Run	170
	A 6.9.2 Distributed Clocks SYNC0 Synchronisierung	170
A 6.10	Videosignal über SDO	170
A 6.11	Bedeutung der STATUS-LED im EtherCAT-Betrieb	171
A 6.12	EtherCAT-Konfiguration mit dem Beckhoff TwinCAT©-Manager	171

Sicherheit 1.

1.1 Verwendete Zeichen

Die Systemhandhabung setzt die Kenntnis der Betriebsanleitung voraus.

In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet:

HINWEIS
1

Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verletzungen führt, falls diese nicht vermieden wird.

Zeigt eine Situation an, die zu Sachschäden führen kann, falls diese nicht vermieden wird.

Zeigt eine Hardware oder eine(n) Schaltfläche/Menüeintrag in der

Zeigt eine ausführende Tätigkeit an.

Zeigt einen Anwendertipp an.

Messung

1.2 Warnhinweise

🗥 VORSICHT

HINWEIS

- Schließen Sie die Spannungsversorgung und das Anzeige-/ Ausgabegerät nach den Sicherheitsvorschriften für elektrische Betriebsmittel an.
- > Verletzungsgefahr
- > Beschädigung oder Zerstörung des Controllers

Software an.

Versorgungsspannung darf angegebene Grenzen nicht überschreiten.

> Beschädigung oder Zerstörung des Controllers

Vermeiden Sie Stöße und Schläge auf den Controller und den Sensor.

> Beschädigung oder Zerstörung der Komponenten

Knicken Sie niemals den Lichtwellenleiter, biegen Sie den Lichtleiter nicht in engen Radien

> Beschädigung oder Zerstörung des Lichtwellenleiters, Ausfall des Messgerätes

Schützen Sie die Enden der Lichtwellenleiter vor Verschmutzung (Schutzkappen verwenden).

- > Fehlmessung
- > Ausfall des Messgerätes

Schützen Sie die Kabel vor Beschädigung.

> Ausfall des Messgerätes

1.3 Hinweise zur Produktkennzeichnung

1.3.1 **CE-Kennzeichnung**

Für das Produkt gilt:

- Richtlinie 2014/30/EU ("EMV")
- Richtlinie 2011/65/EU ("RoHS")

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und der jeweils anwendbaren harmonisierten europäischen Normen (EN). Das Produkt ist ausgelegt für den Einsatz im Industrie- und Laborbereich.

Die EU-Konformitätserklärung und die technischen Unterlagen werden gemäß den EU-Richtlinien für die zuständigen Behörden bereitgehalten.

1.3.2 UKCA-Kennzeichnung

Für das Produkt gilt:

- SI 2016 No. 1091 ("EMC")
- SI 2012 No. 3032 ("RoHS")

Produkte, die das UKCA-Kennzeichen tragen, erfüllen die Anforderungen der zitierten Richtlinien und der jeweils anwendbaren Normen. Das Produkt ist ausgelegt für den Einsatz im Industrie- und Laborbereich.

Die UKCA-Konformitätserklärung und die technischen Unterlagen werden gemäß den UKCA-Richtlinien für die zuständigen Behörden bereitgehalten.

1.4 Bestimmungsgemäße Verwendung

- Das Messsystem confocalDT 2421/2422/2465/2466 ist f
 ür den Einsatz im Industrieund Wohnbereich konzipiert. Es wird eingesetzt zur
 - Weg-, Abstands-, Profil-, Dicken- und Oberflächenmessung
 - Qualitätsüberwachung und Dimensionsprüfung
- Das Messsystem darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe 2.6.
- Das Messsystem ist so einzusetzen, dass bei Fehlfunktionen oder Totalausfall des Sensors keine Personen gefährdet oder Maschinen und andere materielle Güter beschädigt werden.
- Bei sicherheitsbezogenener Anwendung sind zusätzlich Vorkehrungen f
 ür die Sicherheit und zur Schadensverh
 ütung zu treffen.

1.5 Bestimmungsgemäßes Umfeld

- Schutzart
 - Sensor: IP40 ... IP65, siehe 2.6
 - Controller: IP40

Die Schutzart gilt nicht für optische Eingänge, da deren Verschmutzung zur Beeinträchtigung oder dem Ausfall der Funktion führt.

- Temperaturbereich
 - Betrieb:
 - Sensor: +5 ... +70 °C
 - Controller: +5 ... +50 °C
- Lagerung: -20 ... +70 °C
- Luftfeuchtigkeit: 5 ... 95 % (nicht kondensierend)
- Umgebungsdruck: Atmosphärendruck
- EMV: Gemäß EN 61000-6-3 / EN 61326-1 (Klasse B) Störaussendung; EN 61 000-6-2 / EN 61326-1 Störfestigkeit

2. Funktionsprinzip, Technische Daten

2.1 Kurzbeschreibung

Das Messsystem confocalDT 2421/2422/2465/2466 besteht aus:

- einem oder zwei Sensoren IFS24xx inkl. Lichtwellenleiter (Faserkabel),
- einem Controller IFC2421, IFC2422, IFC2465 oder IFC2466,

Die Controller verwenden eine (IFC2421, IFC2465) oder zwei (IFC2422, IFC2466) Weißlicht-LED's als interne Lichtquelle.

Der Sensor ist völlig passiv, da er keine Wärmequellen oder beweglichen Teile beinhaltet. Dadurch wird eine wärmebedingte Ausdehnung vermieden, wodurch sich eine hohe Genauigkeit des Messverfahrens ergibt.

Der Controller wandelt die vom Sensor erhaltenen Lichtsignale mit einem Spektrometer um, berechnet Abstandswerte über den integrierten Signalprozessor (CPU) und überträgt die gemessenen Daten über die Schnittstellen oder den Analogausgang.

Abb. 1 Blockschaltbild confocalDT 2421, 2465

2.2 Messprinzip

Polychromatisches Licht (Weißlicht) wird durch den Sensor auf die Messobjektoberfläche gestrahlt. Die Linsen des Sensors sind so gestaltet, dass durch kontrollierte chromatische Abweichungen jede Wellenlänge des verwendeten Lichtes in einem spezifischen Abstand fokussiert wird. Das von der Messobjektoberfläche reflektierte Licht wird auf umgekehrtem Weg durch den Sensor empfangen und zum Controller geleitet. Es folgt die spektrale Analyse und die Berechnung von Abständen anhand von im Controller gespeicherten Kalibrationsdaten.

 $\begin{array}{ll} & \text{Sensor und Controller bilden eine Einheit, da die Linearisierungstabelle des Sensors im Controller gespeichert ist. } \end{array}$

Dieses einzigartige Messprinzip erlaubt es Anwendungen hochpräzise zu messen. Es können sowohl diffuse als auch spiegelnde Oberflächen erfasst werden. Bei transparenten Schicht-Materialien kann neben der Wegmessung eine direkte Dickenmessung erfolgen. Da Sender und Empfänger in einer Achse angeordnet sind, werden Abschattungen vermieden.

Aufgrund der hervorragenden Auflösung und des geringen Lichtfleckdurchmessers können Oberflächenstrukturen gemessen werden. Zu beachten ist jedoch, dass Messwertabweichungen auftreten können, sobald die Struktur in der Größenordnung des Lichtfleckdurchmessers liegt oder die zulässige Verkippung, zum Beispiel an Rillenflanken, überschritten wird.

2.3 Begriffsdefinition

- MBA Messbereichsanfang. Minimaler Abstand zwischen Sensorstirnfläche und Messobjekt
- MBM Messbereichsmitte
- MBE Messbereichsende (Messbereichsanfang + Messbereich) Maximaler Abstand zwischen Sensorstirnfläche und Messobjekt
- MB Messbereich

Abb. 2 Messbereich und Ausgangssignal am Controller

2.4 Betriebsarten

Die Messbereiche der Sensoren erstrecken sich über einen Bereich von wenigen Zehntel Mikrometer bis mehrere Millimeter. Die Controller können im Videosignal bis zu 6 Peaks unterscheiden.

Bei Zweikanalsystemen (IFC2422 / IFC2466) ist eine Verrechnung der Messwerte beider Kanäle möglich.

Für einen Schnelleinstieg empfiehlt sich die Verwendung von gespeicherten Konfigurationen (Presets) für verschiedene Messobjektoberflächen, siehe 5.2.2.

2.5 Sensoren

Der Controller kann mit 20 unterschiedlichen Sensoren pro Kanal betrieben werden. Die dazu erforderlichen Kalibriertabellen werden im Controller hinterlegt.

Der Sensor ist ein passives Element im Messsystem: Er enthält weder bewegliche noch wärmeerzeugende Bauteile, welche die Messgenauigkeit infolge thermischer Ausdehnung im Sensor beeinflussen könnten.

- Schützen Sie die Enden des Sensorkabels (Lichtwellenleiter) und die Linse des
- 1 Sensors vor Verschmutzung.

2.6 Technische Daten

Modell IFS		FS 2402-0,5	2402-1,5	2402-4	2402-10	2402/90-1,5	2402/90-4	2402/90-10				
Messbereich		0,5 mm	1,5 mm	3,5 mm	6,5 mm	1,5 mm	2,5 mm	6,5 mm				
Messbereich	sanfang	ca. 1,7 mm	0,9 mm	1,9 mm	2,5 mm	2,5 mm ¹	2,5 mm ¹	3,5 mm ¹				
Auflösung	statisc	n ² 16 nm	60 nm	100 nm	200 nm	60 nm	100 nm	200 nm				
Autosung	dynamisc	n ³ 48 nm	192 nm	480 nm	960 nm	192 nm	480 nm	960 nm				
Linearität ⁴	Weg-/Abstandsmessu	ng $< \pm 0,2 \mu$ m	<±1,2 µm	<±3µm	<±13 µm	<±1,2 µm	<±3 µm	<±13 µm				
Lichtpunktdu	rchmesser	10 <i>µ</i> m	20 µm	20 µm	100 <i>µ</i> m	20 µm	20 µm	100 <i>µ</i> m				
Maximaler M	esswinkel ⁵	±18°	±5°	±3°	±1,5°	±5°	±3°	±1,5°				
Numerische	Apertur (NA)	0,40	0,20	0,10	0,10	0,20	0,10	0,10				
Anschluss		integrie	integrierter Lichtwellenleiter 2 m mit E2000/APC Stecker; Verlängerung bis 50 m;									
			Biegeradius: statisch 30 mm, dynamisch 40 mm									
Montage			Radialklemmung, Montageadapter (siehe Zubehor)									
Temperaturb	ereich Lageru	ng	-20 +70 °C									
Temperaturo	Betri	eb	+5 +70 °C									
Schock (DIN	-EN 60068-2-27)		1	15 g / 6 ms in	XY-Achse, je	1000 Schock	s					
Vibration (DII	N-EN 60068-2-6)		2 g	/ 20 Hz 50	0 Hz in XY-Ad	chse, je 10 Zyl	klen					
Schutzart (DI	N-EN 60529)		IP64 (fro	ontseitig)			IP40					
Material			Edelstahlgehäuse, Glaslinsen									
Gewicht			ca. 186 g inkl. Lichtwellenleiter									

Modell		IFS	2403-0,4	2403-1,5	2403-4	2403-10	2403/90-1,5	2403/90-4	2403/90-10		
Messbereich]		0,4 mm	1,5 mm	4 mm	10 mm	1,5 mm	4 mm	10 mm		
Messbereich	isanfang	ca.	2,5 mm	8,0 mm	14,7 mm	11 mm	4,9 mm ¹	12 mm ¹	8,6 mm ¹		
Auflösung	S	statisch ²	16 nm	60 nm	100 nm	250 nm	60 nm	100 nm	250 nm		
Autosurig	dyn	amisch ³	47 nm	186 nm	460 nm	1250 nm	186 nm	460 nm	1250 nm		
Lincorität 4	Weg-/Abstands	messung	$<\pm0,3\mu{ m m}$	$<\pm1,2\mu{ m m}$	$<\pm3\mu m$	<±8 µm	$<\pm1,2\mu{ m m}$	$<\pm3\mu m$	<±8 µm		
Lineaniai	Dickeni	messung	$<\pm0,6\mu{ m m}$	$<\pm2,4\mu{ m m}$	$<\pm6\mu m$	<±16 <i>µ</i> m	$<\pm2,4\mu{ m m}$	$<\pm6\mu m$	<±16 µm		
Lichtpunktdu	urchmesser		9 µm	15 <i>µ</i> m	28 µm	56 µm	15 <i>µ</i> m	28 µm	56 µm		
Maximaler Messwinkel ⁵			$\pm 20^{\circ}$	$\pm 16^{\circ}$	$\pm 6^{\circ}$	±6°	±16°	$\pm 6^{\circ}$	±6°		
Numerische	Apertur (NA)		0,5	0,3	0,15	0,15	0,3	0,15	0,15		
Mindestdick	e Messobjekt ⁶		0,06 mm	0,23 mm	0,6 mm	1,5 mm	0,23 mm	0,6 mm	1,5 mm		
Anschluss			integrie	integrierter Lichtwellenleiter 2 m mit E2000/APC Stecker; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mm							
Montage			Radialklemmung, Montageadapter (siehe Zubehör)								
Tomporaturb	L	agerung	-20 +70 °C								
remperaturu		Betrieb	+5 +70 °C								
Schock (DIN	-EN 60068-2-27)			1	5 g / 6 ms in	XY-Achse, je	1000 Schock	s			
Vibration (DI	N-EN 60068-2-6)			2 g	/ 20 Hz 50	0 Hz in XY-Ad	chse, je 10 Zyl	klen			
Schutzart (D	IN-EN 60529)		IP64 (frontseitig) IP40								
Material			Edelstahlgehäuse, Glaslinsen								
Gewicht			ca. 200 g (inkl. Lichtwellenleiter)								

1) Messbereichsanfang ab Sensorachse gemessen

2) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

3) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

4) Alle Daten ausgehend von konstanter Raumtemperatur (25 ±1 °C) bei Messung auf planparalleles Prüfglas; bei anderen Messobjekten können die Daten abweichen

5) Maximaler Messwinkel des Sensors, bis zu dem auf spiegelnden Oberflächen ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

6) Glasscheibe mit Brechungsindex n=1,5 in Messbereichsmitte

Messbereich 2 mm 2 mm 2 mm 2 mm 2 mm Messbereichs- anfang ca. 14 mm 9,6 mm ¹ 14 mm 9,6 mm ¹ Auflösung dynamisch 2 mm 125 mm 1125 mm 125 mm 125 mm Lineartät Weg-Abstand <<<1 µm <<<1 µm <<<1 µm <<<1 µm Lichenmessung <<1 µm <<<1 µm <<<1 µm <<<1 µm <<<1 µm Numerische Apertur (NA) 0.25 0.25 0.25 0.25 0.25 Mindestdicke Messobjekt 0,1 mm 0,1 mm 0,1 mm 0,1 mm 0,1 mm Anschluss FCBuches, Tyo C2404-x; Standardlinge 2 m; Verlängerung bis 50 m; Biegeradlus; statisch 30 mm, dynamisch 40 mm Stackbarer Lichtweilenieter über FCBuches; Elondardlinge 3 m; Verlängerung bis 50 m; Biegeradlus; Statisch 30 mm, dynamisch 40 mm Stackbarer Lichtweilenieter über FCBuches; Elondardlinge 3 m; Verlängerung bis 50 m; Biegeradlus; Statisch 30 mm, dynamisch 40 mm Stackbarer Lichtweilenieter über FCBuches; Elondardlinge 3 m; Verlängerung bis 50 m; Biegeradlus; Statisch 30 mm, dynamisch 40 mm Stackbarer Uberweilenieter über FCBuches; Elondardlinge 3 m; Verlängerung bis 50 m; Biegeradlus; Statisch 30 mm, dynamisch 40 mm Stackbarer Uberweilenieter über FCBuches; Elondardling	Modell	IFS	240)4-2	2404	/90-2	2404-	2(001)	2404/9	0-2(001)]	
Messbereichs- anfang ca. 14 mm 9,6 mm ⁻¹ 14 mm 9,6 mm ⁻¹ Auflösung stalisch ² 40 nm 40 nm 40 nm 40 nm 40 nm Auflösung dynamisch ² 125 nm 126 nm 126 nm 126 nm	Messbereich		2 r	nm	2 n	าm	2 r	nm	2	mm		
antang ca. i + min 9,0 mm i + min 9,0 mm Aufforung statisch ³ 40 nm 40 nm 40 nm 40 nm 40 nm Aufforung dipanisch ³ 125 nm 125 nm 125 nm 125 nm 125 nm Linearität ⁴ Weg-Abstand <±1 µm	Messbereichs-		14		0.0	1	14			1	-	
Autlösung statisch 2 40 nm 40 nm 40 nm 40 nm 40 nm Linearität Weg-/Abstand - 125 nm 126 nm 126 nm 126	anfang	ca.	14		9,0 11111		14 11111		9,0 mm			
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	Auflösung	statisch ²	40	nm	40	nm	40 nm		40 nm			
	Autosung	dynamisch ³	125	nm	125	nm	125	nm	12	5 nm		
	Linearität ⁴	Weg-/Abstand	<±	1 <i>µ</i> m	<±1	μm	<±'	1 <i>µ</i> m	< <u>+</u>	:1 <i>µ</i> m		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dickenmessung	<±2	2 <i>µ</i> m	<±2	2 <i>μ</i> m	<±2	2 μm	< <u>+</u>	:2 µm		
Maxmaler Messwinkle1* $\pm 12^\circ$ </td <td>Lichtpunktdurc</td> <td>hmesser</td> <td>10</td> <td>μm</td> <td>10</td> <td>μm</td> <td>10</td> <td>μm</td> <td>10</td> <td>) μm</td> <td></td>	Lichtpunktdurc	hmesser	10	μm	10	μm	10	μm	10) μm		
Numerische Apertur (NA) 0,25 0,25 0,25 0,25 Mindestlicke Messobjekt [®] 0,1 mm Verlangerung bis 50 m, Biegeradlus: Ver	Maximaler Mes	swinkel ⁵	±	12°	±.	12°	±.	12°	±	:12°		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Numerische Ap	pertur (NA)	0	,25	0,	25	0,	25	C),25		
Steckbarer Lichtwellenleiter über FC-Buchser, Tyc C2404-x, Standardlänge PC-Buchser, Tyc C2404-x, Standardlänge PC-Buchser, Standardlänge 3 m; Verlängerung bis 50 mm, Biegeradius: statisch 30 mm, dynamisch 40 mmStockbarer Lichtwellenleiter über FC-Buchser, Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mmMontageRadialklemmung, Montageadapter (siehe Zubehör)Temperaturbe- Lagerung20 + 70 °CSchock (DIN-EN 60068-2-27)15 g / 8 ms in XY-Achse, je 1000 SchocksSchotz (DIN-EN 60068-2-6)2 g / 20 Hz 500 Hz in XY-Achse, je 100 SchocksSchotz (DIN-EN 60068-2-6)2 g / 20 Hz 500 Hz in XY-Achse, je 100 SchocksSchotz (DIN-EN 60529)IP66 (frontseitig)MaterialEdelstahlgehäuse, GlasilnsenGewicht 7ca. 20 gca. 30 gca. 20 gca. 30 gca. 40 gModellIFS2405-0,32405-12405-22405-28/ VaC(001)Messbereich- of and affang0,3 mmca.6 mm10 mm20.mm63 mm41 mm 1Son m220 mmUnfösung dynamisch 318 nmMuffösung dynamisch 44.0,1 µmVerlögermetsensensensensensensensensensensensensens	Mindestdicke M	/lessobjekt ⁶	0,1	mm	0,1	mm	0,1	mm	0,1	mm		
Montage Radialklemmung, Montageadapter (siehe Zubehör) Temperaturbe- reich Lagerung $-20+70$ °C Betrieb $+5+70$ °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-27) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 600529) IP65 (frontseitig) Material Edelstahlgehäuse, Glaslinsen Gewicht 7 ca. 20 g ca. 30 g ca. 40 g ca. 50 g Modell IFS 2405-0,3 2405-3 2405/90-6 2405/90-6 2405-10 2405-28/ VAC (001) 2405-30 Messbereich 0,3 mm 1 mm 3 mm 6 mm 10 mm 28 mm 30 mm Auflösung statisch 2 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Linearität Abstand $4:0,1 \mum$ $4:0,2 \mum$ $4:1,5 \mum$ $4:1,5 \mum$ $4:1,5 \mum$ $4:1,5 \mum$ $4:1,5 \mum$ $4:1,2 \mum$ $4:2,0 \mum$ $4:1,0 \mum$ $5:0 m$ $5:0 m$ Linearität *<	Anschluss		Steck FC-Buchs 2 m; Verlär statisc	kbarer Licht se, Typ C24 ngerung bis h 30 mm, d	wellenleiter 04-x; Stand 50 mm; Bio ynamisch 4	über ardlänge egeradius: 0 mm	Steck FC-B Verläng statisc	barer Licht uchse; Sta erung bis t h 30 mm, c	wellenleite ndardläng 50 m; Bieg lynamisch	er über je 3 m; geradius: n 40 mm		
Temperaturbe- reich Lagerung -20 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Schutzart (DIN-EN 60068-2-27) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen IP66 (frontseitig) Schutzart (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen IP66 (frontseitig) Material Edelstahlgehäuse, Glaslinsen 2405-30 2405-6 2405/90-6 2405-10 2405-28 2405-30 Modell IFS 2405-0,3 2405-3 2405-6 2405/90-6 2405-10 2405-28 2405-30 Messbereich 0,3 mm 1 mm 3 mm 6 mm 10 mm 20 mm 100 mm Auffösung statisch 2 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Linearität 4 Meg-/ 4 nm 8 nm 190 nm 190 nm 204 nm 747 nm 530 nm Linearität 4 Meg-/ 4 nm 8 nm 31 µm 31 µm 4 1 µm	Montage			Radi	alklemmung	g, Montage	eadapter (s	iehe Zubel	nör)			
+ 5 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schock (DIN-EN 60529) VERS f(notselitg) Material Gewicht 7 ca. 20 g ca. 40 g ca. 50 g Modell IP65 (frontselitg) Z405-30 g 2405-90 g 2405-90 g 2405-90 g ca. 40 g ca. 50 g Modell IP65 (frontselitg) Z405-90 g 2405-90 g 2405 #0 g 2405 #0 g 240 m 30 m <th colspa<="" td=""><td>Temperaturbe-</td><td>Lagerung</td><td></td><td></td><td></td><td>-20 +</td><td>-70 °C</td><td></td><td></td><td></td><td>-</td></th>	<td>Temperaturbe-</td> <td>Lagerung</td> <td></td> <td></td> <td></td> <td>-20 +</td> <td>-70 °C</td> <td></td> <td></td> <td></td> <td>-</td>	Temperaturbe-	Lagerung				-20 +	-70 °C				-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	reich	Betrieb				+5 +	-70 °C					
Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 2 n XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP65 (frontseitig) IP65 (frontseitig) Material Edelstahlgehäuse, Glaslinsen ca. 50 g Gewicht ⁷ ca. 20 g ca. 30 g ca. 40 g ca. 50 g Modell IFS 2405-0,3 2405-1 2405-6 2405/90-6 2405-10 2405-28 2405-30 Messbereich 0,3 mm 1 mm 3 mm 6 mm 10 mm 28 mm 30 mm Auflösung statisch ² 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Auflösung statisch ² 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Linearität ⁴ Abstand k1,0,µm <±0,5 µm	Schock (DIN-E	N 60068-2-27)			15 g / 6 ms	in XY-Ach	se, je 1000	Schocks				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vibration (DIN-	EN 60068-2-6)		2 g	g / 20 Hz	500 Hz in	XY-Achse,	je 10 Zykle	n		-	
Material Edelstahlgehäuse, Glaslinsen Gewicht ⁷ ca. 20 g ca. 30 g ca. 40 g ca. 50 g Modell IFS 2405-0,3 2405-1 2405-6 2405/90-6 2405-10 2405-28 2405-28/VAC(001) 2405-28 VAC(001) 2405-30 2405-30 Messbereichs- anfang 0,3 mm 1 mm 3 mm 6 mm 10 mm 28 mm 30 mm Auflösung statisch ² 4 nm 8 nm 15 nm 34 nm 36 nm 130 nm 93 nm Auflösung dynamisch ³ 18 nm 38 nm 80 nm 190 nm 190 nm 20 nm 41 nm 530 nm Linearität 4 Mveg-/ <±0,1 µm	Schutzart (DIN	-EN 60529)		IP65 (frontseitia)								
Gewicht 7 ca. 20 g ca. 30 g ca. 40 g ca. 50 g Modell IFS 2405-0,3 2405-1 2405-6 2405/90-6 2405-10 2405-28 2405-30 Messbereich 0,3 mm 1 mm 3 mm 6 mm 6 mm 10 mm 28 mm 30 mm Messbereichs- ca. 6 mm 10 mm 20 mm 63 mm 41 mm ⁻¹ 50 mm 220 mm 100 mm Auflösung statisch 2 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Linearität Weg-/ $< \pm 0.1 \mu m$ $< \pm 0.25 \mu m$ $< \pm 0.75 \mu m$ $< \pm 1.5 \mu m$ $< \pm 2.5 \mu m$ $< \pm 7.0 \mu m$ $< \pm 6 \mu m$ Linearität 4 Messbard $< \pm 0.2 \mu m$ $< \pm 0.75 \mu m$ $< \pm 3 \mu m$ $< \pm 5 \mu m$ $< \pm 7.0 \mu m$ $< \pm 6 \mu m$ Linearität 4 Messbard $= \pm 0.2 \mu m$ $< \pm 0.75 \mu m$ $< \pm 1.5 \mu m$ $< \pm 2.5 \mu m$ $< \pm 1.7 \mu m$ $< \pm 2.5 \mu m$ $< \pm 1.7 \mu m$ $< \pm 2.5 \mu m$	Material				Edels	stahlgehäu	se, Glaslin	sen			-	
Modell IFS 2405-0,3 2405-1 2405-3 2405-6 2405/90-6 2405-28 2405-28 2405-28 2405-28 2405-28 2405-30 2405-30 Messbereichs- anfang 0.3 mm 1 mm 3 mm 6 mm 6 mm 10 mm 28 mm 30 mm 30 mm Auflösung	Gewicht 7		ca.	20 g	ca. S	30 g	ca.	40 g	ca.	50 g	-	
Messbereich 0,3 mm 1 mm 3 mm 6 mm 6 mm 10 mm 28 mm 30 mm Messbereichs- anfang ca. 6 mm 10 mm 20 mm 63 mm 41 mm 1 50 mm 220 mm 100 mm Auflösung $\frac{statisch^2}{dynamisch^3}$ 4 nm 8 nm 15 nm 34 nm 34 nm 36 nm 130 nm 93 nm Linearität ⁴ $\frac{Weg'}{Abstand}$ $\leq \pm 0.1 \mu m$ $\leq \pm 0.25 \mu m$ $\leq \pm 1.5 \mu m$ $\leq \pm 1.5 \mu m$ $\leq \pm 2.5 \mu m$ $\leq \pm 7.0 \mu m$ $\leq \pm 6 \mu m$ Linearität ⁴ $\frac{Weg'}{Abstand}$ $\leq \pm 0.2 \mu m$ $\leq \pm 0.5 \mu m$ $\leq \pm 1.5 \mu m$ $\leq \pm 3.5 \mu m$ $\leq \pm 7.0 \mu m$ $\leq \pm 6 \mu m$ Lichtpunktdurchmesser $6 \mu m$ $8 \mu m$ $9 \mu m$ $31 \mu m$ $31 \mu m$ $16 \mu m$ $\leq \pm 2.5 \mu m$ $<\pm 1.2 \mu m$ $<$	Modell	IFS	2405-0,3	2405-1	2405-3	2405-6	2405/90-6	2405-10	2405-28	2405-28/	2405-30	
Messbereichs- anfang ca. 6 mm 10 mm 20 mm 63 mm 41 mm ¹ 50 mm 220 mm 100 mm Auflösung $\frac{1}{4 nm}$ 8 nm 15 nm 34 nm 36 nm 130 nm 93 nm $\frac{1}{4 nm}$ 1 nm 8 nm 15 nm 34 nm 36 nm 130 nm 93 nm $\frac{1}{4 nm}$ 1 nm 38 nm 80 nm 190 nm 190 nm 204 nm 747 nm 530 nm $\frac{1}{10earität^4}$ $\frac{1}{4 bstand}$ $\pm 0.25 \mu m$ $\pm 1.5 \mu m$ $\pm 1.5 \mu m$ $\pm 2.5 \mu m$ $\pm 1.7, \mu m$ $\pm 1.5 \mu m$ $\pm 1.0^{\circ}$ $\pm 1.7^{\circ}$ $\pm $	Messbereich		0.3 mm	1 mm	3 mm	6 mm	6 mm	10 mm	28	mm	30 mm	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Messbereichs-		-				-					
$\begin{tabular}{ c c c c c c c } \hline A \ dynamisch 2 4 nm $8 nm $15 nm $34 nm $34 nm $34 nm $36 nm $130 nm $93 nm $93 nm $130 nm $93 nm $130 nm $93 nm $130 nm $93 nm $130 nm $130 nm $93 nm $130 nm $130 nm $130 nm $93 nm $130 nm $140 nm$	anfang	ca.	6 mm	10 mm	20 mm	63 mm	41 mm '	50 mm	220	0 mm	100 mm	
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Auflösuna	statisch ²	4 nm	8 nm	15 nm	34 nm	34 nm	36 nm	13	0 nm	93 nm	
$\begin{tabular}{ c c c c c } \hline Weg-f & <\pm 0.1 \ \mu m & <\pm 0.25 \ \mu m & <\pm 0.75 \ \mu m & <\pm 1.5 \ \mu m & <\pm 1.5 \ \mu m & <\pm 2.5 \ \mu m & <\pm 7.0 \ \mu m & <\pm 6 \ \mu m & \\ \hline Dickenmessung & <\pm 0.2 \ \mu m & <\pm 0.5 \ \mu m & <\pm 1.5 \ \mu m & <\pm 3 \ \mu m & <\pm 2.5 \ \mu m & <\pm 1.4 \ \mu m & <\pm 12 \ \mu m & \\ \hline Lichtpunktdurchmesser & 6 \ \mu m & 8 \ \mu m & 9 \ \mu m & 31 \ \mu m & 31 \ \mu m & 16 \ \mu m & 60 \ \mu m & 50 \ \mu m & \\ \hline Maximaler Messwinkel 5 & \pm 34^\circ & \pm 30^\circ & \pm 24^\circ & \pm 10^\circ & \pm 10^\circ & \pm 17^\circ & \pm 5^\circ & \pm 9^\circ & \\ \hline Numerische Apertur (NA) & 0,6 & 0.55 & 0.45 & 0.22 & 0.22 & 0.3 & 0.1 & 0.2 & \\ \hline Mindestdicke Messobjekt ^\circ & 0.015 \ m m & 0.05 \ m m & 0.15 \ m m & 0.3 \ m m & 0.5 \ m m & 2.2 \ m m & 1.5 \ m m & \\ \hline Anschluss & $tisckbarer Lichtwellenleiter \ über FC Buchse; Standardlänge 3 \ m; Verlängerung bis 50 \ m; Biegeradius: statisch 30 \ m, dynamisch 40 \ m & \\ \hline Montage & $-20 \ + 70 \ ^\circC$ & \\ \hline Temperaturbe- \ Lagerung & $-20 \ + 70 \ ^\circC$ & \\ \hline Temperaturbe- \ Lagerung & $-20 \ + 70 \ ^\circC$ & \\ \hline Schock (DIN-EN 60068-2-27) & $15 g / 6 \ ms in XY-Achse, je 1000 \ Schocks & \\ \hline Vibration (DIN-EN 60068-2-6) & $2 g / 20 \ Hz \ 500 \ Hz in XY-Achse, je 10 \ Zyklen & \\ \hline Schutzart (DIN-EN 60068-2-6) & $2 g / 20 \ Hz \ 500 \ Hz in XY-Achse, je 10 \ Zyklen & \\ \hline Material & $Aluminiumgehäuse, \ Glaslinsen & $Brüniertes \ Brüniertes \ Br$,	dynamisch ³	18 nm	38 nm	80 nm	190 nm	190 nm	204 nm	74	7 nm	530 nm	
Dickenmessung $<\pm 0,2 \ \mu m$ $<\pm 0,5 \ \mu m$ $<\pm 1,5 \ \mu m$ $<\pm 3 \ \mu m$ $<\pm 5 \ \mu m$ $<\pm 14 \ \mu m$ $<\pm 12 \ \mu m$ Lichtpunktdurchmesser $6 \ \mu m$ $8 \ \mu m$ $9 \ \mu m$ $31 \ \mu m$ $31 \ \mu m$ $16 \ \mu m$ $60 \ \mu m$ $50 \ \mu m$ Maximaler Messwinkel 5 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ $\pm 10^{\circ}$ $\pm 17^{\circ}$ $\pm 5^{\circ}$ $\pm 9^{\circ}$ Numerische Apertur (NA) $0,6$ $0,55$ $0,45$ $0,22$ $0,22$ $0,3$ $0,1$ $0,2$ Mindestdicke Messobjekt 6 $0,015 \ mm$ $0,05 \ mm$ $0,15 \ mm$ $0,3 \ mm$ $0,3 \ mm$ $0,5 \ mm$ $2,2 \ mm$ $1,5 \ mm$ Anschlusssteckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mmMontageRadialklemmung, Montageadapter (siehe Zubehör)Temperaturbe-Lagerung $-20 \ mmmodelta + 70 \ ^{\circ}C$ Schock (DIN-EN 60068-2-27)15 g / 6 ms in XY-Achse, je 1000 SchocksVibration (DIN-EN 60068-2-6) $2 \ g / 20 \ Hz \ mmodelta + 5 \ $	Linearität ⁴	/-Weg Abstand	<±0,1 µm	<±0,25 µm	<±0,75 µm	<±1,5 µm	<±1,5 µm	<±2,5 µm	<±	7,0 µm	<± 6 µm	
$\begin{tabular}{ c c c c c c } Lichtpunktdurchmesser & 6 \ \mu m & 8 \ \mu m & 9 \ \mu m & 31 \ \mu m & 31 \ \mu m & 16 \ \mu m & 60 \ \mu m & 50 \ \mu m \\ \hline Maximaler Messwinkel^5 & \pm 34^\circ & \pm 30^\circ & \pm 24^\circ & \pm 10^\circ & \pm 10^\circ & \pm 17^\circ & \pm 5^\circ & \pm 9^\circ \\ \hline Numerische Apertur (NA) & 0,6 & 0,55 & 0,45 & 0,22 & 0,22 & 0,3 & 0,1 & 0,2 \\ \hline Mindestdicke Messobjekt^\circ & 0,015 \ mm & 0,05 \ mm & 0,15 \ mm & 0,3 \ mm & 0,3 \ mm & 0,5 \ mm & 2,2 \ mm & 1,5 \ mm \\ \hline Anschluss & & & & & & & & & & & & & & & & & & $		Dickenmessung	<±0,2 µm	<±0,5 µm	<±1,5 µm	<±3 µm	< ±3 µm	<±5µm	<±	14 µm	<±12 µm	
Maximaler Messwinkel 5 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ $\pm 10^{\circ}$ $\pm 10^{\circ}$ $\pm 17^{\circ}$ $\pm 5^{\circ}$ $\pm 9^{\circ}$ Numerische Apertur (NA)0,60,550,450,220,220,30,10,2Mindestdicke Messobjekt 60,015 mm0,05 mm0,15 mm0,3 mm0,3 mm0,5 mm2,2 mm1,5 mmAnschlusssteckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mmMontagesteckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mmMontage-20 +70 °CTemperaturbe-LagerungMontage-20 +70 °CSchock (DIN-EN 60068-2-27)15 g / 6 ms in XY-Achse, je 1000 SchocksVibration (DIN-EN 60068-2-6)2 g / 20 Hz 500 Hz in XY-Achse, je 10 ZyklenSchutzart (DIN-EN 60068-2-6)IP64 (frontseitig)MaterialAluminiumgehäuse, GlaslinsenMaterialAluminiumgehäuse, GlaslinsenGewichtca.140 g125 g225 g260 g315 g500 g750 g730 g	Lichtpunktdurc	hmesser	6 µm	8 µm	9 µm	31 <i>µ</i> m	31 µm	16 µm	60)μm	50 µm	
Numerische Apertur (NA) 0,6 0,55 0,45 0,22 0,22 0,3 0,1 0,2 Mindestdicke Messobjekt ° 0,015 mm 0,05 mm 0,15 mm 0,3 mm 0,3 mm 0,5 mm 0,2 mm 1,5 mm Anschluss steckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: statisch 30 mm, dynamisch 40 mm Montage Temperaturbe- Lagerung -20 +70 °C -20 +70 °C Schock (DIN-EN 60068-2-27) -20 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen IP40 (frontseitig) (frontseitig) Grevinterseitage Aluminium- Aluminium- Edelstahl- gehäuse Glaslinsen	Maximaler Mes	swinkel⁵	±34°	±30°	±24°	±10°	±10°	±17°	=	±5°	±9°	
Mindestdicke Messobjekt 60,015 mm0,05 mm0,15 mm0,3 mm0,3 mm0,5 mm2,2 mm1,5 mmAnschlusssteckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: sta- tisch 30 mm, dynamisch 40 mmMontageRadialklemmung, Montageadapter (siehe Zubehör)Temperaturbe- reichLagerung-20 +70 °CSchock (DIN-EN 60068-2-27)15 g / 6 ms in XY-Achse, je 1000 SchocksVibration (DIN-EN 60068-2-6)2 g / 20 Hz 500 Hz in XY-Achse, je 10 ZyklenSchutzart (DIN-EN 60529)IP64 (frontseitig)MaterialAluminiumgehäuse, GlaslinsenGewichtca.140 g125 g225 g260 g315 g500 g750 g730 g	Numerische Ap	pertur (NA)	0,6	0,55	0,45	0,22	0,22	0,3		0,1	0,2	
Anschluss steckbarer Lichtwellenleiter über FC Buchse; Standardlänge 3 m; Verlängerung bis 50 m; Biegeradius: sta- tisch 30 mm, dynamisch 40 mm Montage Radialklemmung, Montageadapter (siehe Zubehör) Temperaturbe- reich Lagerung -20 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP64 (frontseitig) IP40 (frontseitig) IP65 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Brüniertes Edelstahl- gehäuse, Glaslinsen Aluminium- gehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Mindestdicke N	Nessobjekt ⁶	0,015 mm	0,05 mm	0,15 mm	0,3 mm	0,3 mm	0,5 mm	2,2	2 mm	1,5 mm	
MontageRadialklemmung, Montageadapter (siehe Zubehör)Temperaturbe- reichLagerung-20 +70 °CBetrieb+5 +70 °CSchock (DIN-EN 60068-2-27)15 g / 6 ms in XY-Achse, je 1000 SchocksVibration (DIN-EN 60068-2-6)2 g / 20 Hz 500 Hz in XY-Achse, je 10 ZyklenSchutzart (DIN-EN 60529)IP64 (frontseitig)IP40 (frontseitig)MaterialBrüniertes Edelstahl- gehäuse, GlaslinsenBrüniertes GlaslinsenGewichtca.140 g125 g225 g260 g315 g500 g750 g730 g	Anschluss		steckbarer	Lichtwellenle	eiter über FC	Buchse; Sta tisch 30 m	andardlänge m, dynamise	e 3 m; Verlâr ch 40 mm	igerung bis	50 m; Biege	eradius: sta-	
Temperaturbe- reich Lagerung 20 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP64 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Montage				Radialkle	emmung, M	ontageadap	ter (siehe Zu	ıbehör)			
reich Betrieb +5 +70 °C Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP64 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Temperaturbe-	Lagerung				-2	20 +70 °C	;				
Schock (DIN-EN 60068-2-27) 15 g / 6 ms in XY-Achse, je 1000 Schocks Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP64 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	reich	Betrieb				+	∙5 +70 °C	;				
Vibration (DIN-EN 60068-2-6) 2 g / 20 Hz 500 Hz in XY-Achse, je 10 Zyklen Schutzart (DIN-EN 60529) IP64 (frontseitig) IP64 (frontseitig) IP65 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Brüniertes Edelstahl- gehäuse, Glaslinsen Aluminium- gehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Schock (DIN-E	N 60068-2-27)			15	g / 6 ms in X	(Y-Achse, je	1000 Schoc	ks			
Schutzart (DIN-EN 60529) IP64 (frontseitig) IP64 (frontseitig) IP65 (frontseitig) Material Aluminiumgehäuse, Glaslinsen Brüniertes Edelstahl- gehäuse, Glaslinsen Aluminium- Edelstahl- gehäuse Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Vibration (DIN-	EN 60068-2-6)			2 g / 2	0 Hz 500	Hz in XY-Ac	hse, je 10 Z	yklen			
Material Aluminiumgehäuse, Glaslinsen Brüniertes Edelstahl- gehäuse, Glaslinsen Brüniertes Edelstahl- gehäuse Aluminium- gehäuse, Glaslinsen Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Schutzart (DIN	-EN 60529)			IP64	4 (frontseitio)			IP40	IP65	
Gewicht ca. 140 g 125 g 225 g 260 g 315 g 500 g 750 g 730 g	Material	,			Aluminium	gehäuse, Gl	aslinsen			(frontseitig) Brüniertes Edelstahl- gehäuse	(frontseitig) Aluminium- gehäuse, Glaslinsen	
	Gewicht	ca.	140 g	125 g	225 g	260 g	315 g	500 g	7	50 g	730 g	

1) Messbereichsanfang ab Sensorachse gemessen

2) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

3) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

5) Maximaler Messwinkel des Sensors, bis zu dem auf spiegelnden Oberflächen ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

6) Glasscheibe mit Brechungsindex n = 1,5 über den gesamten Messbereich. In der Messbereichsmitte können auch dünnere Schichten gemessen werden.

⁴⁾ Alle Daten ausgehend von konstanter Raumtemperatur (25 ±1 °C) bei Messung auf planparalleles Prüfglas; bei anderen Messobjekten können die Daten abweichen

Modell	IFS	2406-2,5/VA	C(003)	2406/9	0-2,5/VAC(001) 2406-3	2406-10	240	06-10/VAC(001)	2406-3/VAC(001)
Messbereich			2,5	5 mm		3 mm		10) mm	3 mm
Messbereichsanfang	ca.	17,2 m	m	1	12,6 mm 1	75 mm		27	7 mm	75 mm
	statisch ²		18	3 nm		32 nm		3	8 nm	50 nm
Auflösung	dynamisch ³		97	7 nm		168 nm		20)7 nm	168 nm
	Weg-/Abstand	<±0,75 μm			<±1,5 µr	n	<:	±2μm	< ±1,5 µm	
Linearität 4	Dickenmessung	<±1.5 µm			<±3.0 µr	n	<	, ±4 μm	< ±3 µm	
Lichtpunktdurchmesse	er		1() <i>u</i> m		35 µm		1	5 μm	35 µm
Maximaler Messwinke	5		+	-16°		+6.5°		+	13.5°	+6.5°
Numerische Apertur (0.3		0.14			10,0	0.14
Mindestdicke Messoh	iokt ⁶		0.13	25 mm		0 15 mm		0	5,20 5 mm	0.15 mm
Anschluss (steckbarer über FC Buchse; Läng	r Lichtwellenleiter ge 3 bis 50 m)		Typ C240x-x (01); Biegeradius: statisch 30 mm, dynamisch 40 mm Statisch							
Montage				R	ladialklemmun	g; Montagea	dapter (sieł	ne Z	ľubehör)	
Temperaturbereich	Lagerung					-20 +7	O°C			
	Betrieb					+5 +7	O°C			
Schock (DIN-EN 6006	8-2-27)				15 g / 6 ms	s in XY-Achse	e, je 1000 So	cho	cks	
Vibration (DIN-EN 600	68-2-6)				2 g / 20 Hz	500 Hz in X	Y-Achse, je	10 2	Zyklen	IP40
Schutzart (DIN-EN 60529)		IP40 (vakuumtauglich)			IP65 (fro	ontseitig)	(va	akuumtauglich)	(vakuumtauglich)	
Gewicht		ca. 105	g	(ca. 130 g	ca. 99 g		ca.	128 g	ca. 250 g
Modell	IFS	2407-0,1	2407-0	,1(001)	2407-0,8	2407	2407/90-0,3		2407/1,5	2407-3
Messbereich		0,1 mm			0,8 mm	0,3	0,3 mm		1,5 mm	3 mm
Messbereichsanfang	ca.	1 mm			5,9 mm	5,3	5,3 mm		17 mm	28 mm
Auflösung	statisch ²	3 nm			24 nm	6	6 nm		6 nm	13 nm
	dynamisch °	0			75 nm	20	20 nm		36 nm	63 nm
Linearität ⁴	Dickenmessung	< ±($0.1 \mu m$		$< \pm 0.2 \mu m$	< ±0	, ιο μπι) ο μm		$<\pm0.3\mu\text{m}$	$<\pm 0.5 \mu m$
Lichtpunktdurchmesse	er	3.um	ο, ι μπ Δι	ım	< ±0,4 μm	6	<u>6 μm</u>		5.5 μm	$\leq \pm 1 \mu m$
Maximaler Messwinke	5	+48°	+2	18°	$+30^{\circ}$	+	مبر 27°		$+43^{\circ}(+70^{\circ})^{8}$	+30°
Numerische Apertur (1	NA)	0.8	- 0	.7	0.5).5		0.7	0.53
Mindestdicke Messob	iekt ⁶	0.00)5 mm		0.04 mm	0.01	5 mm		0.075 mm	0.15 mm
Anschluss (Steckbarer Lichtwelle bis 50 m);	enleiter, Länge 3	FC Buchse;	FC Buchse; Biegeradius: statisch 30 mm, dynamisch 40 mm				Buchse; 2407-x; us: statisch amisch 40 n	FC Buchse; Biegeradius: statisch 30 mm, dynamisch 40 mm		
Montage		Radialkle	mmung (siehe Z	, Montag ubehör)	geadapter	Montage (2)	bohrungen M2)		Radialklemmun (siehe	g, Montageadapter Zubehör)
Temperaturbereich	Lagerung					-20 +7	'0 °C			
	Betrieb					+5 +7	'0 °C			
Schock (DIN-EN 60068-2-27)					15 g / 6 ms	s in XY-Achse	e, je 1000 So	cho	cks	
Vibration (DIN-EN 600				2 g / 20 Hz	500 Hz in X	Y-Achse, je	10 2	Zyklen		
Schutzart (DIN-EN 605	529)					IP65 (front	seitig)		A li una ini i	maahäuss
Material			E	Edelstah	lgehäuse, Gla	slinsen			Gla	slinsen
Gewicht		ca	36 g		ca. 40 g	ca.	30 g		ca. 800 g	ca. 550 g
Besondere Merkmale		Hohe numerische Apertur	Lichts Ser	tarker Isor	-		-		-	-

1) Messbereichsanfang ab Sensorachse gemessen

2) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

3) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

4) Alle Daten ausgehend von konstanter Raumtemperatur (25 ±1 °C) bei Messung auf planparalleles Prüfglas; bei anderen Messobjekten können die Daten abweichen

5) Maximaler Messwinkel des Sensors, bis zu dem auf spiegelnden Oberflächen ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

6) Glasscheibe mit Brechungsindex n = 1,5 über den gesamten Messbereich. In der Messbereichsmitte können auch dünnere Schichten gemessen werden.

7) Sensorgewicht ohne Lichtwellenleiter

8) Maximaler Messwinkel des Sensors, bis zu dem auf diffus reflektierende metallische Oberflächen ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt.

Modell	IFC	2421	2421MP	2422	2422MP	2465	2465MP	2466	2466MP	
I	Ethernet / EtherCAT	1 nm								
Auflösung	RS422	18 bit								
	Analog	16 bit teachbar								
Messrate		S	tufenlos ei 100 Hz bi	nstellbar v s 10 kHz ¹	on	stufenic	os einstellb 30 k	ar von 10 (Hz	00 Hz bis	
Linearität			ty	yp. < ±0,	025 % d.M.	(Sensor	abhängig)			
Mehrschichtmessu	ung	1 Schicht	5 Schichten	1 Schicht	5 Schichten	1 Schicht	5 Schichten	1 Schicht	5 Schichten	
Lichtquelle					interne wei	ße LED				
Anzahl Kennlinien		Ablage	on bis zu 2	20 Kennlin ü	ien verschie ber Tabelle	edener S im Menü	ensoren pi i	ro Kanal,	Auswahl	
zulässiges Fremdli	icht ²				30.000) Ix				
Synchronisation					ja					
Versorgungsspanr	nung				24 VDC ±	15 %				
Leistungsaufnahm	e				ca. 10	W				
Signaleingang			Sync-In /	Trig-In; 2 › 3 x E	(Encoder (A+	A+, A-, E •, A-, B+	8+, B-, Ind , B-)	ex) oder		
Digitale Schnittstel	lle	Ethernet / EtherCAT / RS422 / PROFINET ³ / EtherNet/IP ³								
Analogausgang		Strom: 4 20 mA; Spannung: 0 10 V (16 bit D/A Wandler)								
Schaltausgang		Fehler1-Out, Fehler2-Out								
Digitalausgang					Sync-0	Dut				
	optisch	steckbarer Lichtwellenleiter über E2000-Buchse, Länge 2 m 50 m, min. Biegeradius 30 mm						50 m,		
Anschluss	elektrisch	3-poli Buch RS422- Ausga (max. K	ge Versorgu se, max. Ka Anschlussl ngsklemml abellänge	ungsklemr abellänge ouchse (9 eiste (max 30 m); RJ4 (ma	nleiste; Enc 3 m, 30 m l -polig, Sub- (. Kabelläng 45-Buchse f ax. Kabellär	ncoderanschluss (15-polig, HD-Sub- n bei externer Encoderversorgung); b-D, max. Kabellänge 30 m); 3-polige nge 30 m); 11-polige I/O Klemmleiste e für Ethernet (out) / EtherCAT (in/out) änge 100 m)				
Montage				frei steh	end, Hutsc	hienenm	ontage			
Temperaturbereich	Lagerung	-20 +70 °C								
Temperaturbereici	Betrieb	+5 +50 °C								
Schock (DIN-EN60	0068-2-27)		15	5g / 6 ms i	n XYZ-Achs	e, je 100	0 Schocks	;		
Vibration (DIN-EN6	60068-2-6)		2 g	/ 20 50	0 Hz in XYZ	Z-Achse,	je 10 Zykle	en		
Schutzart (DIN-EN	60529)				IP40)				
Material					Alumin	ium				
Gewicht		ca.	1,8 kg	ca. 2	,25 kg	ca.	1,8 kg	ca. 2	,25 kg	
Kompatibilität			ko	ompatibel	mit allen co	onfocalD	T-Sensoren			
Anzahl Messkanäl	e ⁴		1		2		1		2	
Bedien- und Anzei	geelemente	Multifunktionstaste (Zwei einstellbare Funktionen sowie Reset auf Werksein- stellung nach 10 s); 5x LED für Intensity, Range, Status und Versorgungsspannung								

d.M. = des Messbereichs

1) Voller Messbereich bis 8 kHz. Sensorabhängig bis 80% des Messbereichs zwischen 9 und 10 kHz

2) Lichtart: Glühlampe

3) Anbindung über Schnittstellenmodul (siehe Zubehör)

4) Keine Einbußen in der Intensität und Linearität durch zwei synchrone Messkanäle

3. Lieferung

3.1 Lieferumfang

1 Controller

1 Sensor mit Sensorkabel

IFC2421/2422/2465/2466 (Lichtwellenleiter)

- 2 m
- 1 RJ Patchkabel Cat5 1 Abnahmeprotokoll
- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

3.2 Lagerung

Temperaturbereich Lager: -20 ... +70 °C

Luftfeuchtigkeit: 5 ... 95 % (nicht kondensierend)

4. Montage

4.1 Controller IFC2421/2422/2465/2466

Der Controller IFC2421/2422/2465/2466 kann auf eine ebene Unterlage gestellt oder mit einer Tragschiene (Hutschiene TS35) nach DIN EN 60715 (DIN-Rail) z. B. in einem Schaltschrank befestigt werden.

Bei der Montage auf einer Hutschiene wird eine elektrische Verbindung (Potentialausgleich) zwischen dem Controllergehäuse und der Tragschiene im Schaltschrank hergestellt.

- Zum Lösen ist der Controller nach oben zu schieben und nach vorn abzuziehen.
- Bringen Sie den Controller so an, dass die Anschlüsse, Bedien- und Anzeigeelemente nicht verdeckt werden.

Abb. 3 Maßzeichnung Frontansicht des Controllers IFC2421/2465, Abmessungen in mm

Abb. 4 Maßzeichnung Frontansicht des Controllers IFC2422/2466, Abmessungen in mm

Abb. 5 Maßzeichnung Seitenansicht des Controllers IFC2421/2422/2465/2466, Abmessungen in mm

4.2 Bedienelemente Controller

Abb. 6 Frontansicht Controller IFC2422 (IFC2421, IFC2465, IFC2466)

1	Taste Multifunction (Dunkelabgleich, Lichtquelle) ¹	7	Ethernet / EtherCAT
2	LED Status	8	Digital I/O
3	LEDs Intensity, Range	9	Anschluss RS422
4	Sensoranschluss Kanal 2 (Lichtleiter) ²	10	Anschluss Encoder
5	Sensoranschluss Kanal 1 (Lichtleiter)	11	Analogausgang (U / I)
6	Anschluss Versorgungsspannung, LED Power On		

Setzen auf Werkseinstellung: Drücken Sie die Taste Multifunction länger als 10 s.
 Nur vorhanden bei Controller IFC2422 und IFC2466.

4.3 LEDs am Controller

Power on	Grün	Betriebsspannung vorhanden		
	Aus	Kein Fehler		
Status	Rot blinkend	Fehler in der Verarbeitung		
	Ist die EtherCAT- Schnittstelle aktiv, dann Bedeutung der LED nach den EtherCAT-Richtlinien.			
Intensity Kanal 1/2	Rot blinkend	Dunkelabgleich läuft		
💽 🌑 Sensor 2	Rot	Signal in Sättigung		
Intensit Range	Gelb	Signal zu gering		
Sensor 1	Grün	Signal in Ordnung		
Range Kanal 1/2	Rot blinkend	Dunkelabgleich läuft		
🔵 🥯 Sensor 2	Rot	Kein Messobjekt vorhanden, außerhalb des Messbereichs		
Intensit Range	Gelb	Messobjekt in der Nähe von Messbereichsmitte		
Sensor 1	Grün	Messobjekt im Messbereich		

Abb. 7 Bedeutung der LEDs am Controller

Bei einem Synchronisationsfehler blinken die LED's Intensity und Range mit ihrer aktuellen Farbe.

4.4 Elektrische Anschlüsse Controller

4.4.1 Anschlussmöglichkeiten

Abb. 8 Anschlussbeispiele am confocalDT 2421/2422/2465/2466

An den Anschlusslitzen lassen sich die verschiedenen Peripheriegeräte, mit den dargestellten Anschlusskabeln anschließen.

Peripheriegerät	Sensor- Kanäle	Spannungsversorgung Konverter/Module	Schnittstelle
IF2001/USB, RS422-USB-Konverter	1		
IF2030/PNET, IF2030/ENETIP	2	entional arbältlichen Naturail DC0000	
IF2008/ETH	8	optional emailinches Netztell PS2020	RS422
IF2004/USB	4		
IF2008/PCIE, PCI-Interfacekarte	4		

4.4.2 Handhabung der steckbaren Schraubklemmen

Der Controller IFC2421/2422/2465/2466 hat drei steckbare Schraubklemmen für Versorgung, Digital I/O und Analogausgang. Diese liegen als Zubehör bei.

- Entfernen Sie die Isolierung der Anschlussdrähte (0,14 ... 1,5 mm²) auf einer Länge von 7 mm.
- Schließen Sie die Anschlussdrähte an.
- Die Schraubklemmen lassen sich mit zwei unverlierbaren Schrauben fixieren.

4.4.3 Massekonzept, Schirmung

Alle Ein- und Ausgänge sind galvanisch mit der Versorgungsspannungsmasse (GND) verbunden, lediglich die Anschlüsse von Ethernet/EtherCAT sind potentialfrei.

Die Masseanschlüsse (GND. GND422, GND_ENC) jeder Anschlussgruppe sind galvanisch über Drosseln intern miteinander verbunden.

Die Shield-Anschlüsse jeder Anschlussgruppe sind nur mit dem Controllergehäuse verbunden. Sie dienen zum Anschluss der Kabelabschirmungen bei Einzelanschlüssen (Power, Analogausgang, Schaltausgänge, Synchronisation und Triggereingang).

Verwenden Sie nur geschirmte Kabel mit einer Länge von kleiner 30 m und schließen Sie die Kabelabschirmung an Shield oder den Steckergehäusen an.

4.4.4 Versorgungsspannung (Power)

- 3-pol. steckbare Schraubklemme (24 VDC, GND, Shield),
- 24 VDC ± 15 %, I ____ <1 A
- nicht galvanisch getrennt, GND ist mit GND von Schaltausgängen, Synchronisation und Encodereingang galvanisch verbunden.
- Verwenden Sie ein geschirmtes Kabel mit einer Länge von kleiner 30 m.

Abb. 9 Versorgungs-Anschlüsse und LED am Controller IFC2421/2422/2465/2466

Nach dem Anlegen der Versorgungsspannung leuchtet die LED Power.

 Spannungsversorgung nur für Messgeräte, nicht gleichzeitig für Antriebe oder ähnliche Impulsstörquellen verwenden. Micro-Epsilon empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020 für den Sensor.

4.4.5 RS422

- Differenzsignale nach EIA-422, galvanisch von Versorgungsspannung getrennt.
- Receiver Rx mit internem Abschlusswiderstand 120 Ohm.
- Schließen Sie den Transmittereingang Tx am Auswertegerät (Receiver) mit 90 ... 120 Ohm ab.
- Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern. Kabellänge kleiner 30 m.
- Verbinden Sie die Masseanschlüsse.
- Die Anschlussbelegung der 9-pol. D-
- Sub-Buchse ist nicht genormt.

Pin	Name	Signal	RS422
3	RX -	Empfänger -	
2	RX +	Empfänger +	
5	GND422	Masse RS422	
9	TX +	Sender +	0 0
1	TX -	Sender -	
Gehäuse	Schirm	Kabelschirm	

Abb. 10 Anschlussbelegung 9-pol. D-Sub-Buchse (RS422)

4.4.6 Ethernet, EtherCAT

Potentialgetrennte Standardbuchse RJ45 zur Verbindung des Controllers IFC2421/2422/2465/2466

- mit einem Ethernet-Netzwerk (PC) oder
- mit dem Bussystem EtherCAT (IN-Port).
- Verbinden Sie Controller und Netzwerk mit einem geschirmten Ethernetkabel (Cat5E, Patchkabel 2 m aus Lieferumfang, Gesamtkabellänge kleiner 100 m.

Die beiden LED in den Steckverbindern zeigen die erfolgreiche Verbindung und deren Aktivität an.

Abb. 11 Buchsen RJ45 für Ethernet, EtherCAT)

Die Konfiguration des Messgerätes kann über die Weboberfläche oder durch ASCII-Befehle (z. B. Telnet), siehe A 5, oder mit EtherCAT-Objekten erfolgen.

4.4.7 Analogausgang

Die beiden alternativen Analogausgänge (Spannung oder Strom) liegen an der 3-pol. Schraubklemme an und sind mit der Versorgungsspannung galvanisch verbunden.

Spannung: Pin U/Iout und Pin GND,

 R_j ca. 50 Ohm, $R_L > 10$ MOhm

Slew rate (ohne C_I, R_I \geq 1 kOhm) typ. 0,5 V/µs

Slew rate (mit $C_L = 10 \text{ nF}, R_L \ge 1 \text{ kOhm}$) typ. 0,4 V/µs

Strom: Pin U/Iout und Pin GND

 $R_L \le 500 \text{ Ohm}$

Slew rate (ohne C_L, $R_L = 500$ Ohm) typ. 1,6 mA/ μ s

Slew rate (mit C_L= 10 nF, R_L = 500 Ohm) typ. 0,6 mA/ μ s

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 30 m.

Pin 3 (Shield) ist mit dem Gehäuse verbunden.

Der Ausgabebereich kann alternativ auf die folgenden Werte gesetzt werden:

Spannung: 0 ... 5 V; 0 ... 10 V;

Strom: 4 ... 20 mA.

Die Messwerte können nur als Spannung oder Strom ausgegeben werden.

- $\stackrel{\bullet}{l}$ Die Steckbuchse ist mechanisch kodiert (roter Einschub), um sie nicht mit der Versorgungsspannung zu verwechseln.
- 2 Zur Einhaltung der IEC 61326-1:2020/CISPR 16-2-3 muss am Analogausgangs-
- kabel ein Klappferrit mit einer Impedanz von mind. 140 Ohm bei 100 MHz mit 2 Windungen angebracht werden. Micro-Epsilon empfiehlt den Klappferrit der Firma Würth mit der Artikelnummer 74271622.

Abb. 12 Analogausgänge am Controller

4.4.8 Schaltausgänge (Digital I/O)

Die beiden Schaltausgänge Error 1/2 auf der 11-poligen steckbaren Schraubklemme sind galvanisch mit der Versorgungsspannung verbunden.

Das Schaltverhalten (NPN, PNP, Push-Pull) ist programmierbar, I max 100 mA.

Die Hilfsspannung für einen Schaltausgang mit NPN-Schaltverhalten darf maximal 30 V betragen.

Abb. 13 Ausgangsverhalten und Beschaltung der Schaltausgänge Error 1/2

Schaltausgang 1: Pin Error 1 und GND

Schaltausgang 2: Pin Error 2 und GND

Kabelschirm: Pin Shield ist mit dem Gehäuse verbunden. Schließen Sie den Kabelschirm an.

Alle GND sind untereinander und mit der Versorgungsmasse verbunden.

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 30 m.

Abb. 14 Digital I/O am Controller

Ausgangspegel (ohne Lastwiderstand) bei einer Versorgungsspannung von 24 VDC	Low < 1 V; High > 23 V
Sättigungsspannung	Low < 2,5 V (Ausgang - GND)
bei I _{max} = 100 mA	High < 2,5 V (Ausgang - + U_{B})

Die Sättigungsspannung wird zwischen Ausgang und GND, bei Ausgang = Low, oder zwischen Ausgang und U_B , bei Ausgang = High, gemessen.

Bezeichnung	Ausgang aktiv (Fehler)	Ausgang passiv (kein Fehler)
NPN (Low side)	GND	+ U _B
PNP (High side)	+ U _B	GND
Push-Pull	+ U _B	GND
Push-Pull, negiert	GND	+ U _B

Abb. 15 Schaltverhalten der Schaltausgänge

HINWEIS

Der Lastwiderstand R_L kann entsprechend den Grenzwerten ($I_{max} = 100 \text{ mA}$, $U_{H_{max}} = 30 \text{ V}$) und Erfordernissen dimensioniert werden. Bei Anschluss induktiver Lasten,

z. B. ein Relais, darf die parallele Schutzdiode nicht fehlen.

4.4.9 Synchronisation (Ein-/Ausgänge)

Belegung der 11-pol. steckbaren Schraubklemme, siehe Abb. 14

- Die Pins +Sync/Trig und -Sync/Trig: Symmetrischer Aus-/Eingang Synchronisation oder Eingang Triggerung, Funktion und Richtung (E/A) sind programmierbar.
- Der Terminierungswiderstand R_T (120 Ohm) kann via Software zu- oder abgeschaltet werden, siehe 6.1.1.

Alle GND sind untereinander und mit der Versorgungsmasse verbunden.

Signal	Pegel	ြန္အခြင့္အခြဲ Digital I/O
Sync/Trig	RS422 (EIA422)	+ Sync/ - Sync/ GND- CND- CND- CND- CND- CND- CND- CND- C
Die Funktion und E/A	sind programmierbar	

Abb. 16 Signalpegel Synchronisation, Triggerung

Aktivieren Sie im letzten Controller (Slave n) in der Kette den Terminierungswiderstand (120 Ohm).

Sternsynchronisierung

- Verbinden Sie die Pins +Sync/Trig und -Sync/Trig von Controller 1 (Master) sternförmig mit den Pins +Sync/ Trig und -Sync/Trig von Controller 2 (Slave) bis Controller n, um zwei oder mehrere Controller miteinander zu synchronisieren, siehe Abb. 17
- Teilleitungslänge kleiner 30 m bei Sternsynchronisierung,

Kettensynchronisierung

- Verbinden Sie die Pins +Sync/Trig und -Sync/Trig von Controller 1 (Master) mit den Pins +Sync/Trig und -Sync/Trig von Controller 2 (Slave 1). Verbinden Sie die Pins nachfolgender Controller, um zwei oder mehrere Controller miteinander zu synchronisieren, siehe Abb. 17
- Gesamtleitungslänge 30 m bei Kettensynchronisierung.
- Verwenden Sie geschirmte Kabel mit verdrillten Adern.
- Schließen Sie den Kabelschirm an Shield an.
- Programmieren Sie den Controller 1 auf Master und alle anderen Controller auf Slave, siehe 6.1.1.

Abb. 17 Synchronisierung mehrerer Controller, links sternförmig, rechts verkettet

- Verbinden Sie alle GND untereinander, falls die Controller nicht von einer gemeinsamen Stromversorgung gespeist werden.
- Werden die Controller über die EtherCAT-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne die Sync-Leitung realisiert werden.

4.4.10 Triggerung

Die 11-pol. steckbare Schraubklemme Digital I/O, stellt zwei Triggereingänge zur Verfügung.

Eingang Sync/Trig

Der Anschluss Sync/Trig kann auch als symmetrischer Triggereingang für einen oder mehrere Controller benutzt werden.

Die Anschlüsse Sync/Trig der Controller sind auf die Funktion Triggereingang zu programmieren Querverweis.

Die Triggerquelle (Master) muss ein symmetrisches Ausgangssignal gemäß der Norm RS422 liefern.

Für unsymmetrische Triggerquellen empfiehlt Micro-Epsilon den Pegelwandler SU4 (3 Kanäle TTL/HTL auf RS422) zwischen Triggersignalquelle und Controller zu schalten.

Encoder sind zur Triggerung nicht geeignet.

Eingang TrigIn

Der Schalteingang Trigln ist mit einem internen Pull-up-Widerstand von 15 kOhm ausgestattet, ein offener Eingang wird als High erkannt.

Als Triggerquelle können Schaltkontakte, Transistoren (NPN, N-Kanal FET) oder SPS-Ausgänge dienen.

+ Sync/Trig- - Sync/Trig- GND CND CND CND CND CND CND CND C

Elektrische Eigenschaften

- Programmierbare Logik (TTL/HTL),
- TTL: Low-Pegel \leq 0,8 V; High-Pegel \geq 2 V
- HTL: Low-Pegel \leq 3 V; High-Pegel \geq 8 V (max. 30 V),
- Minimale Impulsbreite 50 µs

4.4.11 Encodereingänge

An der 15-poligen HD-Sub-Buchse können zwei Encoder gleichzeitig angeschlossen und über 5 V versorgt werden.

Jeder Encoder liefert die Signale A, B und N (Nullimpuls, Referenz, Index). Die maximale Pulsfrequenz beträgt 1 MHz.

RS422-Pegel (symmetrisch) für A, B, N

Encoderversorgung 5 V: jeweils 5 V, max. 300 mA

Abb. 18 15-polige HD-Buchse

Encoder	Pin	Signal	Encoder	Pin	Signal
	1	GND ENC1	2	11	GND ENC2
	5	A1+		3	A2+
	4	A1-		2	A2-
4	10	N1+ ¹		8	N2+ 1
I	9	N1- ¹		7	N2- ¹
	15	B1+		13	B2+
	14	B1-		12	B2-
	6 ENC U _p +5V		6	$ENC U_{p} + 5V$	
Steckergehäuse		Controllergehäuse		Kabelschirm	

Ansicht Lötseite Kabelstecker

Abb. 19 Anschlussbelegung Encodereingänge

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 3 m. Schließen Sie den Kabelschirm am Gehäuse an.

Anschlussbedingungen

Die Encoder müssen symmetrische RS422-Signale liefern.

Falls keine RS422-Ausgänge am Encoder vorhanden sein sollten, empfiehlt Micro-Epsilon den Pegelwandler SU4 (3 Kanäle TTL/HTL auf RS422) zwischen Triggersignalquelle und Controller zu schalten.

Zur Versorgung der beiden Encoder kann vorteilhaft die Spannung ENC V +5V aus dem Controller benutzt und mit maximal 300 mA belastet werden. Falls Sie die Spannungsversorgung an der 15-poligen HD-Buchse verwenden, muss die Kabellänge zum Encoder kleiner 3 Meter bleiben. Bei externer Versorgung der Encoder sind Kabellängen bis zu 30 Meter möglich.

Die Eingänge sind nicht galvanisch von der Versorgungsspannung getrennt.

1) Wenn die Encoder ohne die Referenzspuren (N) betrieben werden, können die Referenzspuren (N) als dritter Encoder genutzt werden.

4.5 Sensorkabel, Lichtwellenleiter

Der Sensor wird mit einem Lichtwellenleiter an den Controller angeschlossen.

- Kürzen oder verlängern Sie den Lichtwellenleiter nicht.
- Ziehen oder tragen Sie den Sensor nicht am Kabel.
- Die optische Glasfaser hat einen Durchmesser von 50 μ m.

Der Steckverbinder darf keinesfalls verschmutzt werden, da es sonst zu Partikelablagerungen im Controller und starkem Lichtverlust kommt. Eine Reinigung der Stecker ist nur mit entsprechender Fachkenntnis und Fasermikroskop zur Kontrolle möglich.

Allgemeine Regeln

Vermeiden Sie grundsätzlich

HINWEIS

- jegliche Verschmutzung der Stecker, z. B. Staub oder Fingerabdrücke, und unnötige Steckvorgänge
- jegliche mechanische Belastung des Lichtwellenleiters (Knicken, Quetschen, Ziehen, Verdrillen, Knoten o. ä.)
- starke Krümmung des Kabels, da die Glasfaser dabei rasch geschädigt wird und dies zu einem bleibenden Schaden durch Mikrorisse führt

Unterschreiten Sie niemals den zulässigen Biegeradius.

Festverlegt: R = 30 mm oder mehr

Flexibel: R = 40 mm oder mehr

Quetschen Sie nicht das Sensorkabel, befestigen Sie es nicht mit Kabelbindern.

Ziehen Sie nicht am Sensorkabel.

IFS2402 (Miniatursensoren), IFS2403 (Hybridsensoren)

Die Lichtwellenleiter sind fest mit dem Sensor verbunden und können nicht gewechselt werden. Eine Reparatur beschädigter Kabel ist nur beim Hersteller durch Kürzen des Kabels und neuen Stecker möglich.

IFS2405, IFS2406 (Standardsensoren)

Das Kabel am Sensor ist gesteckt. Optionale Sensorkabellängen bis 50 m, schleppkettentaugliche Kabel oder Kabel mit Metallschutzschlauch sind möglich, siehe A 1. Ein beschädigtes Sensorkabel kann ausgetauscht werden, siehe 8.2.

Sensorkabel am Controller anstecken

- **Entfernen Sie den Blindstecker der grünen** LWL-Buchse Sensor 1/2¹ am Controller.
- Stecken Sie das Sensorkabel mit grünem Stecker (E2000/APC) in die LWL-Buchse und achten Sie dabei auf die richtige Ausrichtung des Sensorsteckers.
- Stecken Sie den Sensorstecker so tief ein, bis er sich verriegelt.

1) Sensoranschluss Sensor 2 ist nur am Controller IFC2422 und IFC2466 vorhanden.

Sensorkabel am Controller abstecken

- Drücken Sie den Entriegelungshebel am Sensorstecker nach unten und ziehen Sie den Sensorstecker aus der Buchse heraus.
- Stecken Sie den Blindstecker wieder ein.

HINWEIS

Verschließen Sie die optischen Ein-/Ausgänge mit Schutzkappen, wenn kein Lichtwellenleiterkabel angeschlossen ist.

4.6 Sensoren

4.6.1 Abmessungen Serie IFS2402

IFS2402-0,5/1,5/4/10

IFS2402/90-1,5/4/10

MB = Messbereich MBA = Messbereichsanfang

4.6.2 Abmessungen Serie IFS2403

IFS2403/90-4

IFS2403/90-10

MB = Messbereich MBA = Messbereichsanfang

4.6.3 Abmessungen Serie IFS2404

IFS2404-2

Alle Abmessungen in mm

IFS2404-2(001)

IFS2405-30

IFS2405-3

IFS2405/90-6

4.6.5 Abmessungen Serie IFS2406

Abmessungen Serie IFS2407 4.6.6

IFS2407-0,1

ø18

014

12,5

V

Alle Abmessungen in mm

-0

-0

54

IFS2407-3

Abmessungen in mm
4.6.7 Messbereichsanfang

Für jeden Sensor muss ein Grundabstand (MBA) zum Messobjekt eingehalten werden.

Abb. 20 Messbereichsanfang (MBA), der kleinste Abstand zwischen Sensorstirnfläche und Messobjekt

MBA = Messbereichsanfang, ca.-Werte

Sensor	MBA
IFS2402-0,5	1,7 mm
IFS2402-1,5	0,9 mm
IFS2402/90-1,5	2,5 mm ¹
IFS2402-4	1,9 mm
IFS2402/90-4	2,5 mm ¹
IFS2402-10	2,5 mm
IFS2402/90-10	3,5 mm ¹

Sensor	MBA
IFS2404-2	14 mm
IFS2404-2(001)	14 mm
IFS2404/90-2	9,6 mm ¹
IFS2404/90-2(001)	9,6 mm ¹

Sensor	MBA
IFS2403-0,4	2,8 mm
IFS2403-1,5	8,1 mm
IFS2403/90-1,5	4,9 mm ¹
IFS2403-4	14,7 mm
IFS2403/90-4	12 mm ¹
IFS2403-10	11 mm
IFS2403/90-10	8,6 mm ¹

Sensor	MBA
IFS2405-0,3	6 mm
IFS2405-1	10 mm
IFS2405-3	20 mm
IFS2405-6	63 mm
IFS2405/90-6	41 mm ¹
IFS2405-10	50 mm
IFS2405-28	220 mm
IFS2405-28/VAC(001)	220 mm
IFS2405-30	100 mm

Sensor	MBA
IFS2406-2,5/VAC(003)	17,3 mm
IFS2406/90-2,5/VAC(001)	12,6 mm ¹
IFS2406-3	75 mm
IFS2406-3/VAC(001)	75 mm
IFS2406-10	27 mm
IFS2406-10/VAC(001)	27 mm

Sensor	MBA
IFS2407-0,1	1,0 mm
IFS2407/90-0,3	5,3 mm
IFS2407-0,8	5,9 mm
IFS2407-1,5	17 mm
IFS2407-3	28 mm

1) Messbereichsanfang ab Sensorachse gemessen

4.6.8 Befestigung, Montageadapter

4.6.8.1 Allgemein

Die Sensoren der Serie IFS240x sind optische Sensoren, mit denen im μ m-Bereich gemessen wird.

• Achten Sie bei Montage und Betrieb auf sorgsame Behandlung!

Die Sensoren sind mit einer Umfangsklemmung zu befestigen. Diese Art der Sensormontage bietet die höchste Zuverlässigkeit, da der Sensor über sein zylindrisches Gehäuse flächig geklemmt wird. Sie ist bei schwierigen Einbauumgebungen, zum Beispiel an Maschinen, Produktionsanlagen und so weiter, zwingend erforderlich.

4.6.8.2 Sensoren der Reihe IFS2402

Montieren Sie die Sensoren IFS2402 mit Hilfe eines Montageadapters MA2402.

Abb. 21 Montageadapter MA2402-4

Abb. 22 Umfangsklemmung mit MA2402 für Sensoren der Serie IFS2402

4.6.8.3 Sensoren der Reihe IFS2403

Montieren Sie die Sensoren IFS2403 mit Hilfe eines Montageadapters MA2403.

Abb. 23 Montageadapter MA2403

4.6.8.4 Sensoren der Reihe IFS2405, IFS2406 und IFS2407

Montieren Sie die Sensoren IFS2405 und IFS2406 und IFS2407 mit Hilfe eines Montageadapters MA240x.

Montagering		Маß А	Маß В	Маß С	Sensor
MA2400-27		ø27	ø46	19,75	IFS2405-0.3 IFS2405-1 IFS2406-3 IFS2406-10
MA2405-34	U MA	ø34	ø50	22	IFS2405-3
MA2405-40		ø40	ø56	25	IFS2405-6
MA2405-54		ø54	ø70	32	IFS2405-10 IFS2407-3
MA2405-62		ø62	ø78	36,5	IFS2405-28 IFS2405-30
MA2406-20		ø20	ø36	14,5	IFS2406-2,5
MA2407-65		ø65	ø81	18	IFS2407-1,5

Abb. 24 Montageblock und Montagering MA240x

Abb. 25 Umfangsklemmung mit Montagering MA240x für Sensoren der Serie IFS2405, IFS2406 und IFS2407, bestehend aus Montageblock und Montagering

Alle Abmessungen in mm

4.6.8.5 Sensoren der Reihe IFS2404 und IFS2407

Montieren Sie die Sensoren IFS2404-2, IFS2404/90-2, IFS2407-0,1 und IFS2407-0,8 mit Hilfe eines Montageadapters MA2404-12.

Abb. 26 Umfangsklemmung mit Montageadapter MA2404-12 für Sensoren der Serie IFS2404-2, IFS2404/90-2, IFS2407-0,1 und IFS2407-0,8

Montieren Sie die Sensoren IFS2407/90 an der Montagefläche mit zwei Schrauben M2 oder mit Hilfe des Montagegewindes M14x0,5.

Abb. 27 Montage für Sensoren der Serie IFS2407/90-0,3

4.6.8.6 Justierbarer Montageadapter JMA-xx

Der justierbare Montageadapter JMA-xx ist kompatibel mit zahlreichen Sensorenmodellen vom Typ confocalDT. Weitere Informationen zu diesem Zubehör finden Sie im Anhang, siehe A 3.

Abmessungen in mm

Betrieb 5.

5.1 Inbetriebnahme

- Verbinden Sie den Controller mit einer Spannungsversorgung, siehe 4.4.4.
- Verbinden Sie Sensor und Controller mit dem Lichtwellenleiter, siehe 4.5.

Mit Einschalten des Controllers folgt die Initialisierung, ca. 10 s später ist das Messsystem betriebsbereit. Lassen Sie das Messsystem für genaue Messungen etwa 60 min warmlaufen. Die Konfiguration ist möglich über die im Controller integrierten Webseiten oder Befehle, siehe A 5. Es wird empfohlen, den Controller über die Webseite einzustellen.

Bedienung mittels Ethernet 5.2

5.2.1 Voraussetzungen

Im Controller werden dynamische Webseiten erzeugt, die die aktuellen Einstellungen des Controllers und der Peripherie enthalten. Die Bedienung ist nur so lange möglich, wie eine Ethernet-Verbindung zum Controller besteht.

Um eine einfache erste Inbetriebnahme des Controllers zu unterstützen, ist der Controller auf eine direkte Verbindung eingestellt. Falls Sie Ihren Browser so eingestellt haben, dass er über einen Proxy-Server ins Internet zugreift, fügen Sie bitte in den Einstellungen des Browsers die IP-Adresse des Controllers zu den IP-Adressen hinzu, die nicht über den Proxy-Server geleitet werden sollen. Die MAC-Adresse des Messgerätes finden Sie auf dem Typenschild des Controllers und auf dem Abnahmeprotokoll.

Sie benötigen einen HTML5-fähigen Webbrowser. Dies ist ab den folgenden Browserversionen gegeben: Google Chrome 25.0

¹ Internet Explorer 10.0 Mozilla Firefox 19.0

Direktverbindung mit PC, Controller mit statischer IP (ab Werk) Netzwerk PC mit statischer IP PC mit DHCP Controller mit dynamischer IP, PC mit DHCP Verbinden Sie den Controller mit einem PC durch eine Ether- \rightarrow Verbinden Sie den Controller mit einem net-Direktverbindung (LAN). Verwenden Sie dazu ein LAN-Switch durch eine Ethernet-Direktver-Kabel mit RJ-45-Steckern. bindung (LAN). Verwenden Sie dazu ein LAN-Kabel mit RJ-45-Steckern. Warten Sie, bis Windows \rightarrow \rightarrow Starten Sie das Programm Tragen Sie den Controller im DHCP ein eine Netzwerkverbindung / melden den Controller Ihrer IT-AbteisensorTOOL.exe. Dieses Proetabliert hat (Verbindung gramm finden Sie online unter luna. mit eingeschränkter Konwww.micro-epsilon.de/down-Der Controller bekommt von Ihrem DHCPload/software/sensorTOOL. nektivität). Server eine IP-Adresse zugewiesen. Diese exe. Starten Sie das IP-Adresse können Sie mit dem Programm Klicken Sie auf die Schaltfläche Programm sensorTOOL abfragen. Sensor sensorTOOL. Starten Sie das Programm \rightarrow Klicken Sie auf die sensorTOOL. Schaltfläche Wählen Sie nun den gewünsch-Klicken Sie auf die Schaltfläche ten Controller aus der Liste aus. Wählen Sie nun den gewünschten Cont-Wählen Sie nun den Für das Ändern der Adresseinroller aus der Liste aus. gewünschten Constellungen klicken Sie auf die \rightarrow Klicken Sie auf die Schaltfläche Öffne troller aus der Liste Schaltfläche Konfigure Sen-Webseite, um den Controller mit Ihrem aus sor IP. Standardbrowser zu verbinden. Klicken Sie auf die Address type: static IP-Address Alternativ: Wenn DHCP benutzt wird und der Schaltfläche Öffne IP address: 169.254.168.150¹ DHCP-Server mit dem DNS-Server gekoppelt Website.um den ist, dann ist ein Zugriff auf den Controller über Subnet mask: 255.255.0.0 Controller mit Ihrem einen Hostnamen der Struktur Standardbrowser zu Klicken Sie auf die Schaltfläche "IFC24xx SN<Seriennummer>" möglich verbinden. Anwenden, um die Änderungen (x = 21 für IFC2421, x = 22 für IFC2422, x = an den Controller zu übertra-65 für IFC2465, x = 66 für IFC2466). gen. Starten Sie einen Webbrowser. Um Klicken Sie auf die Schaltfläche einen IFC2421 mit der Seriennummer Öffne Website, um den "01234567" zu erreichen, tippen Sie in die Controller mit Ihrem Standard-Adresszeile des Webbrowsers "IFC2421 browser zu verbinden. SN01234567" ein. 1) Setzt voraus, dass die LAN-Verbindung am PC z. B. folgende IP-Adresse benutzt: 169.254.168.1.

Abb. 28 Möglichkeiten zur Anbindung an ein LAN

5.2.2 Zugriff über Webinterface

Im Webbrowser erscheinen nun interaktive Webseiten zur Konfiguration des Controllers. Der Controller ist aktiv und liefert Messwerte.

Abb. 29 Erste interaktive Webseite nach Aufruf der IP-Adresse

Die horizontale Navigation enthält folgende Funktionen:

- Die Suchfunktion ermöglicht einen zeitsparenden Zugriff auf Funktionen und Parameter.
- Home. Das Webinterface startet automatisch in dieser Ansicht mit Messchart, Konfiguration und Signalqualität.
- Einstellungen. Dieses Menü enthält alle Controllerparameter, siehe 6.
- Messwertanzeige. Messchart mit Digitalanzeige oder Einblendung des FFT-Signals.
- Info. Enthält Informationen zum Controller, u. a. Messbereich, Seriennummer und Softwarestand.
- Sprachauswahl Webinterface

Alle Einstellungen werden direkt übernommen und an den Controller übertragen.

Die parallele Bedienung über Webbrowser und ASCII-Befehle ist möglich; die letzte Einstellung gilt.

Das Aussehen der Webseiten kann sich abhängig von den Funktionen und der Peripherie ändern. Dynamische Hilfetexte mit Auszügen aus der Betriebsanleitung unterstützen Sie bei der Konfiguration des Sensors.

5.3 Sensor auswählen

Controller und Sensor(en) sind ab Werk aufeinander abgestimmt.

- Gehen Sie in das Menü Einstellungen > Sensor.
- Wählen Sie für den jeweiligen Kanal einen Sensor aus der Liste aus.

Q Einstellungen suchen	Home O Einstellungen
	8
Sensor	🔗 Sensor - Kanal 1
Kanal 1 Kanal 2	IFS2405-3
Sensor IFS2406-12	3.000mm - 00001005
Dunkelkorrektur	IFS2406-10 10.000mm - 00002896
Eingänge	

Im Controller können die Kalibrierdaten von bis zu 20 verschiedenen Sensoren hinterlegt werden. Die Kalibrierung ist nur im Werk möglich.

5.4 Taste Multifunction

Die Taste Multifunction am Controller ist mehrfach belegt. Damit lässt sich z. B. der Dunkelabgleich oder die Lichtquellen der Sensoren bedienen.

Ab Werk ist die Taste mit der Funktion Dunkelabgleich belegt. Ein Wechsel der Belegung ist im Menü Einstellungen > Eingänge möglich. Für einen Belegungswechsel ist die Zugriffsberechtigung Experte erforderlich.

	Funktion 1 Funktion 2	Dunkelabgleich	Startet die Dunkelwertkorrektur für Sensor 1 oder Sensor 2
Multifunction		Mastern Reset Mastern	Startet bzw. beendet eine Master- messung der gewählten Signale
C		LED	Ein-/Ausschalten der Lichtquelle für Sensor 1 oder Sensor 2
		Inaktiv	Taste ohne Funktion

Die Funktionen können den einzelnen Zeitfenstern zugeordnet werden, siehe A 5.3.16. Alle Zeitintervalle werden über Blinken/Leuchten der LED's angezeigt.

Abb. 30 Betätigungsdauer Taste Multifunction

5.5 Dunkelabgleich

Dieser Abgleich ist nach jedem Sensorwechsel notwendig. Der Dunkelabgleich ist abhängig vom Sensor und wird für jeden Sensor separat im Controller gespeichert. Vor dem Dunkelabgleich ist deshalb der gewünschte Sensor anzuschließen und im Menü Einstellungen > Sensor auszuwählen.

Zur Durchführung des Dunkelabgleichs benötigt der Controller eine Warmlaufzeit von ca. 30 min.

Arbeitsschritte:

- Entfernen Sie das Messobjekt aus dem Messbereich oder decken Sie die Sensorstirnfläche mit einem Stück dunklem Papier ab.
- Beim Dunkelabgleich darf sich unter keinen Umständen ein Objekt innerhalb des
- l Messbereichs befinden, oder Fremdlicht in den Sensor gelangen.
- **Drücken Sie die Taste** Multifunction **am Controller**¹ **oder die Schaltfläche** Start **in der Webseite** Einstellungen > Sensor > Dunkelkorrektur.

Die Möglichkeiten der Taste Multifunction sind im Bereich Taste Multifunction erläutert, siehe 5.4.

Die LED's Intensity und Range beginnen zu blinken. Nun zeichnet der Sensor ca. 50 s lang das aktuelle Dunkelsignal auf.

1) Bei mehr als 10 Sekunden wird die Werkseinstellung geladen!

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes. Das dunkelkorrigierte Videosignal nach dem Abgleich ist gekennzeichnet durch einen fast glatten Signalverlauf unmittelbar an der X-Achse.

- Entfernen Sie die Papierabdeckung vom Sensor. Der Sensor kann wieder normal verwendet werden.
 - Der Dunkelabgleich ist in regelmäßigen Abständen zu wiederholen.

Mit jedem neuen Dunkelabgleich wird der aktuelle Helligkeitswert, als Quotient aus der Summe aller Intensitäten und aktueller Belichtungszeit, bestimmt. Wenn eine starke Veränderung zum vorher gespeicherten Wert erkannt wurde, kann das als Grad der Verschmutzung gedeutet werden, und es wird eine Warnung ausgegeben.

Sie können diese Meldung auch ignorieren. Bei zeitkritischen Messungen jedoch sollten Sie sich die aktuelle Belichtungsszeit merken. Reinigen Sie dann vorsichtig die Stirnseite des E2000-Steckers des Sensorkabels. Dazu darf nur reiner Alkohol und frisches Linsenreinigungspapier verwendet werden. Wiederholen Sie danach den Dunkelabgleich. Ändert sich nichts, kann auch das Sensorkabel beschädigt oder der im Controller liegende Faserstecker verschmutzt worden sein.

Wechseln Sie das Sensorkabel oder senden Sie das ganze System zur Überprüfung ein.

Mit einem ASCII-Befehl können Sie bei Bedarf die Warnschwelle bei Verschmutzung einstellen (zulässige Abweichung in %), die Werkseinstellung beträgt 50 %, siehe A 5.3.4.5.

Die Warnschwelle wird setupspezifisch gespeichert.

5.6 Messobjekt platzieren

1

- Platzieren Sie das Messobjekt möglichst in der Mitte des Messbereichs.
- Überschreiten Sie nicht die maximale Verkippung zwischen Sensor und Messobjekt, siehe 2.6.

Die LED Range an der Frontseite des Controllers zeigt die Position des Messobjektes zum Sensor an.

Sensor 2	
tensity Range	
Sensor 1	

Rot blinkend	Dunkelabgleich läuft
Rot	Kein Messobjekt vorhanden oder außerhalb des Messbereichs
Gelb	Messobjekt in der Nähe von Messbereichsmitte
Grün	Messobjekt im Messbereich

5.7 Auswahl Messkonfiguration

Im Controller sind gängige Messkonfigurationen (Preset) für verschiedene Messobjektoberflächen gespeichert. Diese erlauben einen schnellen Start in die individuelle Messaufgabe. Im Preset sind grundlegende Merkmale wie z. B. die Peak- und Materialauswahl oder die Verrechnungsfunktionen bereits eingestellt.

Presets:

Standard matt	Abstandsmessung z. B. gegen Keramik, nicht trans- parente Kunststoffe. Höchster Peak, keine Mittelung, Abstandsberechnung.
Standard glänzend	Abstandsmessung z. B. gegen Metall, polierte Oberflä- chen. Höchster Peak, Median über 5 Werte, Abstandsbe- rechnung.
Multisurface	Abstandsmessung z. B. gegen PCB, Hybrid-Materialien. Höchster Peak, Median über 9 Werte, Abstandsberech- nung.
Einseitige Dickenmessung	Einseitige Dickenmessung z. B. gegen Glas, Material BK7. Erster und zweiter Peak, keine Mittelung, Dickenberechnung.
Mehrschichtmessung Luftspa	Dickenmessung ¹ z. B. gegen Maske unter Glas. 1. Schicht BK7, 2. Schicht Luft, erster und zweiter Peak, Median über 5 Werte.
Mehrschichtmessung Verbund	Schichtdickenmessung ¹ gegen Verbundglas z. B. Wind- schutzscheibe, 1. Schicht BK7, 2. Schicht PC, 3. Schicht BK7, erster und zweiter Peak, keine Mittelung.
Gegenüberliegende Dickenme	Beidseitige Dickenmessung ² gegen Metall. Höchster Peak, Median über 5 Werte. Formel: -1*01DIST -1*02DIST1 + 10
Setups:	
1 MBg	Kundenspezifische Einstellungen, siehe 5.11.

MBg		
2 F14	0118	

Davon ausgehend sind eigene Einstellungen (Setups) möglich. Beim Speichern eines geänderten Presets blendet das Webinterface einen Dialog für die Vergabe eines Setupnamens ein. Damit können Presets nicht irrtümlich überschrieben werden.

Gehen Sie in das Menü Home > Messkonfiguration und starten Sie die Konfigurationsauswahl. Wählen Sie eine Konfiguration oder ein Setup aus.

Eine individuelle Materialauswahl ist im Menü Einstellungen > Messwertaufnahme
> Materialauswahl möglich.

1) Programme in Controllern mit Multi-Peak-Funktion verfügbar.

2) Im Controller IFC2422 und IFC2466 möglich.

5.8 Videosignal

Gehen Sie in das Menü Messwertanzeige. Blenden Sie die Video-Signaldarstellung mit Video ein.

Das Diagramm im rechten großen Grafikfenster stellt das Videosignal der Empfängerzeile in verschiedenen Nachbearbeitungszuständen dar.

Das Videosignal im Grafikfenster zeigt die Spektralverteilung über den Pixeln der Empfängerzeile an. Links 0 % (Abstand klein) und rechts 100 % (Abstand groß). Der zugehörige Messwert ist durch eine senkrechte Linie (Peakmarkierung) markiert.

Das Diagramm startet automatisch bei einem Aufruf der Webseite.

Abb. 31 Webseite Videosignal

Die Webseite Videosignal beinhaltet folgende Funktionen:

- 1 Die LED visualisiert den Zustand der Messwertübertragung.
 - grün: Messwertübertragung läuft.
 - gelb: wartet im Triggerzustand auf Daten
 - grau: Messwertübertragung angehalten

Die Steuerung der Datenabfrage erfolgt mit den Schaltflächen Play/Pause/ Stop/Speichern der übertragenen Messwerte. Stop hält das Diagramm an; eine Datenauswahl und die Zoomfunktion sind weiterhin möglich. Pause unterbricht die Aufzeichnung. Speichern öffnet den Windows-Auswahldialog für den Dateinamen und den Speicherort, um die ausgewählten Video-Signale in eine CSV-Datei zu speichern. Diese enthält alle Pixel, deren (ausgewählte) Intensität) in % und weitere Parameter.

- In Klicken Sie auf die Schaltfläche ► (Start), um die Anzeige der Messergebnisse zu starten.
- 2 Alle Änderungen werden erst wirksam mit Klick auf die Schaltfläche Einstellungen speichern.

- ³ Im linken Fenster können die darzustellenden Videokurven von Kanal 1/2 während oder nach der Messung hinzu- oder abgeschaltet werden. Nicht aktive Kurven sind grau unterlegt und können durch einen Klick auf den Haken hinzugefügt werden. Die Änderungen werden wirksam, wenn Sie die Einstellungen speichern. Mit den Augensymbolen • können Sie die einzelnen Signale ein- oder ausblenden. Die Berechnung läuft weiter im Hintergrund.
 - 0xRAW: Rohsignal (unkorrigiertes CCD-Signal)
 - 0xDARK: Dunkelkorrigiertes Signal (Rohsignal minus Dunkelwertetabelle)
 - 0xLIGHT: Hellkorrigiertes Signal (dunkelkorrigiertes Signal korrigiert mit Hellwertetabelle)
 - 0xDARK_TABLE: Dunkelwertetabelle (nach Dunkelabgleich erzeugte Tabelle)
 - 0xLIGHT TABLE: Hellwertetabelle (nach Hellabgleich erzeugte Tabelle)
- 4 Im Grafikfenster werden jeweils die Videosignal eines Kanales dargestellt. Ein Wechsel zwischen den beiden Kanälen erfolgt mit den Schaltflächen.
- 5 Für die Skalierung der Intensitätsachse (Y-Achse) der Grafik ist Auto (= Autoskalierung) oder Manual (= manuelle Einstellung) möglich.
- 6 Über der Grafik werden die aktuellen Werte der Belichtungszeit und die gewählte Messrate zusätzlich angezeigt.
- 7 Mouseover-Funktion. Beim Bewegen der Maus über die Grafik werden Kurvenpunkte oder die Peakmarkierung mit einem Kreissymbol markiert und die zugehörige Intensität angezeigt. Über dem Grafikfeld erscheint die dazugehörende x-Position in %.
- 8 Der linearisierte Bereich liegt im Diagramm zwischen den grauen Schattierungen und ist nicht veränderbar. Nur Peaks, deren Mitten innerhalb dieses Bereiches liegen, können als Messwert berechnet werden. Der maskierte Bereich kann bei Bedarf eingeschränkt werden und wird dann rechts und links durch eine zusätzliche hellblaue Schattierung begrenzt. Die im resultierenden Bereich verbleibenden Peaks werden für die Auswertung verwendet.
- 9 Die Erkennungsschwelle, bezogen auf das dunkelkorrigierte Signal, ist eine horizontale Gerade entsprechend dem vorgewählten Wert. Sie sollte gerade so hoch liegen, dass möglichst kein ungewollter Peak im Videosignal in die Auswertung einbezogen wird. Für ein gutes Signal- zu Rauschverhältnis ist eine möglichst niedrige Schwelle anzustreben. Die Erkennungsschwelle sollte möglichst nicht verändert werden.
- Skalierung der X-Achse: Das oben dargestellte Diagramm kann mit den beiden Slidern rechts und links im unteren Gesamtsignal vergrößert (gezoomt) werden. Mit der Maus in der Mitte des Zoomfensters (Pfeilkreuz) kann dieses auch seitlich verschoben werden.

Abb. 32 Zoomen mit Slider: einseitig bzw. Bereichsverschiebung mit Pfeilkreuz

11 Die beiden Schaltflächen ermöglichen den Wechsel zwischen Videosignal- und Messwertdarstellung.

5.9 Signalqualität

Ein gutes Messergebnis lässt sich bei ausreichender Intensität des Videosignals erzielen. Eine Reduzierung der Messrate lässt eine längere Belichtung der CCD-Zeile zu und führt so zu hoher Messgüte.

Im Bereich Signalqualität kann per Mausklick zwischen drei vorgegebenen Grundeinstellungen (Statisch, Ausgewogen, Dynamisch) gewechselt werden. Dabei ist die Reaktion im Diagramm und der Systemkonfiguration sofort sichtbar.

Gehen Sie in das Menü Home > Signalqualität und passen Sie die Messdynamik den Erfordernissen an. Kontrollieren Sie das Ergebnis im Videosignal.

Signalqualität		Messrate	Mittelung
	Statisch	200 Hz	Moving, 128 Werte
μm kHz Link KHz Statisch Ausgewogen Dynamisch	Ausgewogen	1 kHz	Moving, 16 Werte
	Dynamisch	6,5 kHz	Moving, 4 Werte

• Startet der Sensor mit einer benutzerdefinierten Konfiguration (Preset), siehe 5.7, ist ein Ändern der Signalqualität nicht möglich.

5.10 Abstandsmessung mit Anzeige auf der Webseite

- Richten Sie den Sensor senkrecht auf das zu messende Objekt aus.
- Rücken Sie den Sensor (oder das Messobjekt) von fern anschließend so lange immer weiter heran, bis der dem verwendeten Sensor entsprechende Messbereichsanfang etwa erreicht ist.

Sobald sich das Objekt im Messfeld des Sensors befindet, wird dies durch die LED Range (grün oder gelb) an der Frontplatte des Controllers angezeigt. Alternativ dazu ist das Videosignal anzusehen.

LED	Zustand	Beschreibung	
Rot		Signal in Sättigung	
Intensity 1/2	Gelb	Signal zu gering	
Grün		Signal in Ordnung	
Rot		Kein Messobjekt oder außerhalb des Messbereichs	
Range 1/2	Gelb	Messobjekt in Mitte Messbereich	
	Grün	Messobjekt im Messbereich	

Abb. 33 Bedeutung der LEDs bei der Abstandsmessung

Nach dem Öffnen von Messwertanzeige > Mess erscheint die nachfolgende Webseite. Das Diagramm startet automatisch bei Aufruf der Webseite. Das Diagramm im rechten großen Grafikfenster zeigt das Messwert-Zeit-Diagramm.

Abb. 34 Webseite Messung (Abstandsmessung)

- 1 Die LED visualisiert den Zustand der Messwertübertragung.
 - grün: Messwertübertragung läuft.
 - gelb: wartet im Triggerzustand auf Daten
 - grau: Messwertübertragung angehalten

Die Steuerung der Datenabfrage erfolgt mit den Schaltflächen Play/Pause/

Stop/Speichern der übertragenen Messwerte. Stop hält das Diagramm an; eine Datenauswahl und die Zoomfunktion sind weiterhin möglich. Pause unterbricht die Aufzeichnung. Speichern öffnet einen Windows Auswahldialog für Dateiname und Speicherort, um die letzten 10.000 Werte in eine CSV-Datei (Trennung mit Semikolon) zu speichern.

➡ Klicken Sie auf die Schaltfläche ► (Start), um die Anzeige der Messergebnisse zu starten.

- 2 Alle Änderungen werden erst wirksam mit Klick auf die Schaltfläche Einstellungen speichern.
- Im linken Fenster können die darzustellenden Signale von Kanal 1/2 während oder nach der Messung hinzu- oder abgeschaltet werden. Nicht aktive Kurven sind grau unterlegt und können durch einen Klick auf den Haken hinzugefügt werden. Die Änderungen werden wirksam, wenn Sie die Einstellungen speichern. Mit den Augensymbolen • können Sie die einzelnen Signale ein- oder ausblenden. Die Berechnung läuft weiter im Hintergrund.
 - 0xSHUTTER: Belichtungszeit
 - 0xINTENSITY: Signalqualität des zu Grunde liegenden Peaks im Videosignal
 - 0xDIST: Zeitlicher Verlauf des Wegsignals
- 4 Für die Skalierung der Messwertachse (Y-Achse) der Grafik ist Auto (= Autoskalierung) oder Manual (= manuelle Einstellung) möglich.
- 5 In den Textboxen über der Grafik werden die aktuellen Werte für Abstand, Belichtungszeit, aktuelle Messrate und Zeitstempel angezeigt. Fehler werden ebenfalls angezeigt.
- 6 Mouseover-Funktion. Im gestoppten Zustand werden beim Bewegen der Maus über die Grafik Kurvenpunkte mit einem Kreissymbol markiert und die zugehörigen Werte in den Textboxen über der Grafik angezeigt. Die Intensitätsbalken werden ebenfalls aktualisiert.
- 7 Die Peakintensität wird als Balkendiagramm angezeigt.
- 8 Skalierung der x-Achse: Bei laufender Messung kann mit dem linken Slider das Gesamtsignal vergrößert (gezoomt) werden. Der Zeitbereich lässt sich auch mit einem Eingabefeld unter der Zeitachse definieren. Ist das Diagramm gestoppt, kann auch der rechte Slider verwendet werden. Das Zoomfenster kann auch mit der Maus in der Mitte des Zoomfensters (Pfeilkreuz) verschoben werden.

5.11 Einstellungen speichern/laden

Dieses Menü ermöglicht Ihnen momentane Geräteeinstellungen im Controller zu speichern oder gespeicherte Einstellungen zu aktivieren. Sie können im Controller acht verschiedene Parametersätze dauerhaft speichern.

Nicht gespeicherte Einstellungen gehen beim Ausschalten verloren. Speichern Sie Ihre Einstellungen in Setups.

Abb. 35 Verwalten von Anwenderprogrammen

💌 Wechseln Sie in das Menü Einstellungen > Laden & Speichern.

Setu	Setups im Controller verwalten, Möglichkeiten und Ablauf					
Eins	stellungen speichern	Bestehendes Setup aktivieren	Änderung im aktiven Setup speichern	Setup nach dem Booten bestimmen		
Men	u Setup erstellen	Menü Laden & Speichern	Menüleiste	Menü Laden & Speichern		
	Geben Sie im Feld	Klicken Sie mit der linken Maustaste auf	Klicken Sie auf die Schaltfläche	Klicken Sie mit der linken Maustaste auf das gewünschte Setup		
	an, z. B. FS 1.4632	Bereich A.	Einstellungen speichern	Bereich A.		
	und betätigen Sie die Eingabe mit der Sebaltfläche Greei	Es öffnet sich der Dialog Messeinstellungen.	Einstellungen speichern	Es öffnet sich der Dialog Messeinstellungen.		
	chern.	Klicken Sie die Schaltflä- che Laden.		Klicken Sie die Schaltflä- che Favorit.		

Die momentanen Einstellungen sind im Controller auch nach dem Ausschalten / Einschalten wieder verfügbar.

Für ein schnelles Zwischenspeichern auf den zuletzt gespeicherten Parametersatz können Sie auch die Schaltfläche Einstellungen speichern, rechts oben, in jeder Einstellungsseite benutzen.

Beim Einschalten wird der zuletzt im Controller gespeicherte Parametersatz geladen.

Setups mit PC/Notebook austauschen, Möglichkeiten				
Setup auf PC speichern	Setup von PC laden			
Menü Laden & Speichern	Menü Laden & Speichern			
Klicken Sie mit der linken Maustaste auf das gewünschte Setup, Bereich A.	Klicken Sie mit der linken Maustaste auf Setup erstel- len.			
Es öffnet sich der Dialog Messeinstel-	Es öffnet sich der Dialog Messeinstellungen.			
lungen.	Klicken Sie die Schaltfläche Durchsuchen.			
Klicken Sie die Schaltfläche Expor-	Es öffnet sich ein Windows-Dialog zur Dateiauswahl.			
	Wählen Sie die gewünschte Datei aus und klicken Sie Schaltflä- che öffnen.			
	Klicken Sie auf die Schaltfläche Importieren.			

6. Erweiterte Einstellungen

6.1 Eingänge

6.1.1 Synchronisation

Sollen mehrere Sensoren taktgleich am gleichen Messobjekt messen, können die Controller untereinander synchronisiert werden. Der Synchronisationsausgang des ersten Controllers IFC24xx-Master wird mit den Synchronisationseingängen weiterer Controller verbunden, siehe 4.4.9.

Master			Erster Controller in der Messkette; synchroni- siert alle nachfolgenden Controller.
Slave Sync/Trig	Termination	on / off	Controller arbeitet in Abhängigkeit vom ersten Controller. Am letzten Controller in der Kette muss der Terminierungswiderstand auf ON gesetzt werden.
Slave TrigIn			Der Eingang erwartet TTL oder HTL-Pegel und ermöglicht eine externe Synchronisation. Der TrigIn-Eingang wird von einer externen Syn- chronisationsquelle, z. B. Frequenzgenerator, angesteuert. Min. 0,1 6,5 kHz bzw. 30 kHz (IFC2465/2466). Es können auch mehrere Controller parallel extern synchronisiert wer- den.

Werden die Controller über eine EtherCAT-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne eine Synchronisationsleitung realisiert werden.

6.1.2 Encodereingänge

Maximal zwei Encoderwerte können exakt den Messdaten zugeordnet, ausgegeben und auch als Triggerbedingung verwendet werden. Diese exakte Zuordnung zu den Messwerten wird dadurch gewährleistet, dass genau die Encoderwerte ausgegeben werden, die in der Hälfte der Belichtungszeit des Messwertes anlagen (die Belichtungszeit kann auf Grund der Regelung variieren). Spur A und B erlauben eine Richtungserkennung. Jeder der zwei Encoder kann getrennt eingestellt werden.

Encoder 1 / 2	Interpolation	einfache / zweifache / vierfache Auflösung		
	Maximaler Wert	Wert		
	Wirkung auf Referenzspur	ohne Wirkung / einmaliges Setzen auf Wert bei Marke / Setzen auf Wert bei allen Marken		
	Setzen auf Wert	Wert		
	Encoderwert per Software setzen			
	Rücksetzen der Erkennung der ersten Referenzmarke			

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes.

6.1.2.1 Interpolation

Eine Interpolation erhöht die Auflösung eines Encoders. Der Zählerstand wird mit jeder interpolierten Impulsflanke erhöht oder erniedrigt.

Abb. 36 Impulsbild Encodersignale

6.1.2.2 Maximaler Wert

Überschreitet der Encoder diesen maximalen Wert, beginnt der Encoderzähler wieder bei Null zu zählen. Dies kann z. B. die Impulszahl eines Drehgebers ohne Nullimpuls (Referenzspur) sein. Der Zählerstand vor einem Überlauf beträgt max. 4.294.967.295 (2 ^ 32-1).

6.1.2.3 Wirkung der Referenzspur

Ohne Wirkung. Der Encoderzähler zählt immer weiter; das Rücksetzen erfolgt bei Einschalten des Controllers oder bei Drücken auf die Schaltfläche Setzen auf Wert.

Einmaliges Setzen auf Wert bei Marke. Setzt den Encoderzähler bei Erreichen der ersten Referenzmarke auf den definierten Wert. Es gilt die erste Marke nach dem Einschalten des Controllers; ohne Ausschalten nur nach Drücken der Schaltfläche Nächste Marke verwenden.

Setzen auf Wert bei allen Marken. Setzt den Encoderzähler auf den Startwert bei allen Marken oder wenn die Marke wieder erreicht wird z. B. bei traversierenden Bewegungen.

Spur A	
Spur B	
Nullimpuls /	Abb. 37 Referenzsignal eines Encoders

6.1.2.4 Setzen auf Wert

Diese Funktion setzt die Encoder auf diesen Wert

- bei jedem Einschalten des Controllers,
- mit der Schaltfläche Setzen auf Wert.

Der Startwert muss kleiner als der Maximalwert sein und beträgt max. 4.294.967.294 (2 ^ 32-2).

6.1.2.5 Rücksetzen Referenzmarke

Setzt die Erkennung der Referenzmarke zurück.

6.1.3 Abschlusswiderstand

Der Abschlusswiderstand am Synchroneingang Sync/Trig wird aus- oder eingeschaltet, um Reflexionen zu vermeiden. An: mit Abschlusswiderstand Aus: kein Abschlusswiderstand

6.2 Messwertaufnahme

6.2.1 Messrate

Die Auswahl der Messrate erfolgt im Menü Einstellungen > Messwertaufnahme > Messrate. Die Messrate gilt beim IFC2422 und IFC2466 für beide Kanäle.

Wählen Sie die gewünschte Messrate aus.

Die Messrate kann kontinuierlich in einem Bereich von 0,1 kHz bis 6,5 kHz bzw. 30 kHz (IFC2465/2466) eingestellt werden. Die Schrittweite beträgt 100 Hz.

Zur Auswahl der Messrate ist die Beobachtung des Videosignales nützlich, siehe 5.8.

Vorgehensweise:

Positionieren Sie das Messobjekt in die Mitte des Messbereichs, siehe Abb. 38. Verändern Sie kontinuierlich die Messrate, bis Sie eine hohe Signalintensität erhalten, die aber nicht übersättigt ist.

Abb. 38 Definition Messbereich und Ausgangssignal

Verfolgen Sie dazu die LED Intensity.

LED	Zustand	Beschreibung
	Rot	Signal in Sättigung
Intensity 1/2	Gelb	Signal zu gering
	Grün	Signal in Ordnung

- Wechselt die Farbe der LED Intensity auf rot, erhöhen Sie die Messrate.
- Wechselt die Farbe der LED Intensity auf gelb, reduzieren Sie die Messrate.
- Wählen Sie die Messrate so, dass die LED Intensity grün leuchtet.
- Wechseln Sie eventuell die Belichtungsart, verwenden Sie Manueller Modus, siehe 6.2.6
- Nehmen Sie die gewünschte Messrate und passen Sie die Belichtungszeit an, oder die Belichtungszeit bestimmt die mögliche Messraten.

Ist das Signal niedrig (LED Intensity leuchtet gelb) oder gesättigt (LED Intensity leuchtet rot), misst der Controller, aber die Messgenauigkeit entspricht möglicherweise nicht den spezifizierten technischen Daten.

6.2.2 Zähler zurücksetzen

Der Messwertzähler kann zur Prüfung verwendet werden, ob alle Daten ausgegeben wurden oder ob ein Paket fehlt. Die Zählung beginnt bei Null.

6.2.3 Triggerung Datenaufnahme

6.2.3.1 Allgemein

Die Triggerbedingungen gelten beim IFC2422 und IFC2466 für beide Kanäle. Die Messwertaufnahme am confocalDT 2421/2422/2465/2466 ist durch ein externes elektrisches Triggersignal oder per Kommando steuerbar.

- Die Triggerung hat keine Auswirkung auf die vorgewählte Messrate.
- Als externe Triggereingänge werden die Eingänge Sync/Trig oder TrigIn benutzt, siehe 4.4.10.
- Werkseinstellung: keine Triggerung, der Controller beginnt mit der Datenübertragung unmittelbar nach dem Einschalten.
- Die Pulsdauer des Triggersignals beträgt mindestens 5 µs.

		Pegel	Trigger-Level	Low / High			
Triggeret		Trigger-Level	Fallende Flanke / St	eigende Flanke			
Sync/Tria	Inggeran	Flanke	Anzahl an Magguartan	manuelle Auswahl	Wert		
Sync/mg			Anzani an Messwerten	unendlich			
	Abschlusswiderstand (für IFC246x, siehe 6.1.3)	Aus / An	Aus / An				
		Pegel	Trigger-Level	Low / High			
	Triggorart	Flanke	Trigger-Level	Fallende Flanke / Steigende Flanke			
TrigIn	Inggeran		Flanke Anzahl an Messwerten	manuelle Auswahl	Wert		
				unendlich			
	Eingangspegel	TTL / HTL					
Softwara			Anzahl dar Maaawarta	manuelle Auswahl	Wert		
Sonware		Alizarii der Messwerte	unendlich				
Encoder 1/2		Untere Grenze		Wert			
		Obere Grenze		Wert			
		Schrittweite		Wert			
Inaktiv		kontinuierliche Messwertausgabe					

Pegel-Triggerung. Kontinuierliche Messwertaufnahme, solange der gewählte Pegel anliegt. Danach beendet der Controller die Messwertaufnahme. Die Pulsdauer muss mindestens eine Zykluszeit betragen. Die darauffolgende Pause muss ebenfalls mindestens eine Zykluszeit betragen.

W = Wegsignal

Abb. 39 Triggerung mit aktivem High-Pegel (U), zugehöriges Analogsignal (A) und Digitalsignal (D)

<code>Flanken-Triggerung</code>. Startet Messwertaufnahme, sobald die gewählte Flanke am Triggereingang anliegt. Die Pulsdauer muss mindestens 5 μ s betragen.

Abb. 40 Triggerung mit fallender Flanke (U), zugehöriges Analogsignal (A) und Digitalsignal (D)

Software-Triggerung. Startet die Messwertaufnahme sobald ein Softwarebefehl (anstatt des Triggereinganges) oder die Schaltfläche Trigger auslösen betätigt wird.

Encoder-Triggerung. Startet die Messwertaufnahme durch einen der beiden Encodereingänge. confocalDT 2421/2422/2465/2466

6.2.3.2 Triggerung der Messwertaufnahme

Das aktuelle Zeilensignal wird erst nach einem gültigen Triggerereignis weiterverarbeitet und die Messwerte daraus berechnet. Die Messwertdaten werden dann für die weitere Berechnung (z. B. Mittelwert) sowie die Ausgabe über eine digitale oder analoge Schnittstelle weitergereicht.

In die Berechnung der Mittelwerte können deshalb unmittelbar vor dem Triggerereignis liegende Messwerte nicht einfließen, stattdessen aber ältere Messwerte, die bei vorhergehenden Triggerereignissen erfasst wurden.

6.2.3.3 Triggerzeitdifferenz

Da die Belichtungszeit nicht direkt durch den Triggereingang gestartet wird, kann man die jeweilige Zeitdifferenz zum Messzyklus ausgeben. Dieser Messwert kann z. B. dazu dienen, Messungen exakt einem Ort zuzuordnen, wenn Messobjekte mit konstanter Geschwindigkeit gescannt werden und jede Spur mit einem Triggerimpuls gestartet wird.

Die Zeit vom Zyklusstart bis zum Triggerereignis wird als Triggerzeitdifferenz bestimmt. Die Ausgabe der ermittelten Zeit erfolgt 3 Zyklen später, bedingt durch die interne Verarbeitung.

Abb. 41 Definition der Triggerzeitdifferenz

- Zyklusstart bedeutet nicht Start der Belichtungszeit. Es besteht nur eine feste Diffe-
- renz zwischen Zyklusstart und dem Ende der Belichtungszeit von 100 ns.

6.2.4 Maskierung Auswertebereich

Der Auswertebereich kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

Die Maskierung begrenzt den Bereich für die Abstands- oder Dickenberechnung im Videosignal. Diese Funktion wird verwendet, wenn z. B. Fremdlicht bestimmter Wellenlängen (blau, rot, IR) Störungen im Videosignal verursacht. Sie könnte auch den Hintergrund maskieren, falls dieser in den Messbereich hineinreicht.

Die Maskierung (Anfang, Ende) wird in die beiden linken Felder an der Seite (in %) eingetragen. Ab Werk ist die Markierung auf 0 % (Anfang) und 100 % (Ende) eingestellt.

 Bei der Begrenzung des Videosignals gilt, dass ein Peak nur erkannt wird, wenn er vollständig innerhalb des maskierten Bereichs liegt, d. h. über der Schwelle. Der Messbereich kann sich dadurch verringern.

Abb. 42 Begrenzung des verwendeten Videosignals

In dem gezeigten Beispiel in der Abbildung werden die Peaks (1) und (2) für die Auswertung verwendet, wohingegen Peak (3) nicht verwendet wird.

6.2.5 Peaksymmetrie

Der Peaksymmetriewert beschreibt die Abweichung des Peaks vom unlinearisierten Schwerpunkt. Er kann als Indikator dienen, ob der ermittelte Messwert gültig ist, z.B an Kanten oder Fasen.

Im Menü Messwertanzeige kann die Ausgabe der Parameter 01SYMM und 02SYMM aktiviert werden:

Messwertdiagramm

	Seriennummer 921120053 Option 000				confocalDT 2466	MICRO-EPSILON
Q. Einstellungen suchen	G Home	 Einstellunge 	n 🐼 Messwertanz	eige 🕕 Info	Einstellungen speichern	• •
Diagrammtyp Diagrammtyp Videosignal	Manuel ¥	01DIST1 0.57833 mm	01SHUTTER 184.6 µs	Messrate 1.000 kHz	01SYMM1 0.291	
Sensor Kanal 1 Kanal 2 Sensor IFS2405-1 00006296	75.000					
Signalauswahl	25.000			A		
Kanal 1 Kanal 2 OIRAW	b		25	50 Bereich [%]	75	100
OILIGHT 01LARK_TABLE						
	* O I				Diagramm	typ Mess Video

Abb. 43 Videosignal im Webinterface mit Parameter 01SYMM

Aussehen des Peaks im Videosignals:	Beschreibung:
	Der Peak ist symmetrisch: Parameter- wert geht gegen Null
	Schwerpunkt des Peaks nach links verschoben: Parameterwert ist negativ
	Schwerpunkt des Peaks nach rechts verschoben: Parameterwert ist positiv

Schnittstelle:	
	Datentyp:
EtherCAT / Ethernet	32-bit Festkommazahl (signed integer); 18 Bit Nachkommastellen
	Wertebereich:
	-8191 bis +8191 (typ5 bis +5)
	Datentyp:
RS422	18-bit Festkommazahl (signed integer); 4 Bit Nachkommastellen
	Wertebereich:
	-8191 bis +8191 (typ5 bis +5)

Abb. 44 Wertebereiche für die Peaksymmetrie

6.2.6 Belichtungsmodus

Der Belichtungsmodus kann beim IFC2422 und IFC2466 für beide Kanäle individuell gesetzt werden.

Messmodus			
Manueller Modus	Belichtungszeit 1 in μ s	IFC242x: Wert (1 μs 10.000 μs) IFC246x: Wert (3 μs 10.000 μs)	
2 Zeiten Modus alternierend	Belichtungszeit 1 in μ s	IFC242x: Wert (1 μs 10.000 μs) IFC246x: Wert (3 μs 10.000 μs)	
	Belichtungszeit 2 (kürzere) in μs	Wert (Wert kleiner als Belichtungszeit 1)	
2 Zeiten Modus automatisch	Belichtungszeit 1 in μ s	IFC242x: Wert (1 μs 10.000 μs) IFC246x: Wert (3 μs 10.000 μs)	
	Belichtungszeit 2 (kürzere) in μs	Wert (Wert kleiner als Belichtungszeit 1)	

Wählen Sie die gewünschte Belichtungsart aus.

Messmodus. Die geforderte oder geeignete Messrate wird gehalten und nur die Belichtungszeit geregelt. Es gilt ein kleinerer Regelungsumfang bei schnellerer Messung. Hier können auch unterschiedlich reflektierende Messobjekte mit der gleichen Messrate gemessen werden. Dauert 1 bis maximal 7 Messzyklen (Wechsel von kein Messobjekt zu gut reflektierendem Messobjekt bei 0,1 kHz Messrate).

Manueller Modus. Ohne Regelung, einmal optimierte Parameter werden gehalten. Dies ist beispielsweise sinnvoll bei schnellen Sprüngen durch ein- und ausfahrende Messobjekte mit gleichen Oberflächen oder hochdynamische Bewegungen (kein Überschwingen). Stark wechselnde Messobjektoberflächen sollten in dieser Betriebsart nicht gemessen werden. Der manuelle Modus kann auch bei mehreren Schichten verwendet werden, wenn der hellste Peak nicht gemessen werden soll. Geeignete Messrate und Belichtungszeit können in der Videosignalanzeige aus dem Automatikmodus übernommen werden.

Zwei-Zeiten-Modus alternierend. Betriebsart mit 2 manuell eingestellten Belichtungszeiten, die immer abwechselnd angewendet werden. Geeignet für 2 sehr unterschiedlich hohe Peaks bei der Dickenmessung. Besonders empfohlen, wenn der kleinere Peak verschwindet bzw. der größere Peak übersteuert. Eine eventuell eingestellte Videomittelung wird hier ignoriert.

Zwei-Zeiten-Modus automatisch. Schnellster Modus mit 2 manuell voreingestellten Belichtungszeiten, von denen automatisch die besser geeignete gewählt wird. Dies empfiehlt sich bei der Abstandsmessung für sehr schnell wechselnde Oberflächeneigenschaften, z. B. verspiegeltes / entspiegeltes Glas.

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes.

6.2.7 Peaktrennung

6.2.7.1 Erkennungsschwelle

Die Erkennungsschwelle kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

Die Erkennungsschwelle (in %, bezogen auf das dunkelkorrigierte Signal) legt fest, ab welcher Intensität ein Peak im Videosignal in die Auswertung einbezogen wird. Zur Festlegung ist deshalb die Beurteilung der Videokurve unerlässlich.

Mindestschwelle	Wert	Wert in %, ab Werk 2 %
-----------------	------	------------------------

Vorgabe der Erkennungsschwelle.

- Bei sehr schwachen Signalen, typisch bei hohen Messraten, ist die Erkennungsschwelle niedrig zu wählen, da nur Signalanteile oberhalb dieser Schwelle in die Berechnung eingehen.
- Legen Sie die Schwelle generell so hoch, dass keine störenden Peaks im Videosignal detektiert werden.

Die Erkennungsschwelle hat Auswirkungen auf die Linearität, deshalb möglichst wenig ändern.

6.2.7.2 Peakmodulation

Die Peakmodulation kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

Anwendung findet die Peakmodulation z. B. bei der Vermessung von dünnen Schichten. Ein Peak, der mit Hilfe der Erkennungsschwelle erkannt wurde, kann aus zwei oder mehreren überlappenden Peaks bestehen. Die Peakmodulation gibt an, wie stark das Videosignal moduliert sein muss, damit der Peak für die folgende Signalverarbeitung nochmals aufgeteilt wird.

Abb. 45 Getrennte Peaks: Messung möglich

Abb. 46 Peaks ineinander: Messunsicherheit wahrscheinlich

Die Modulation wird für jeden Peak getrennt bewertet, der mit Hilfe der Erkennungsschwelle erkannt wurde.

Defaultwert ist 50 % als Kompromiss zwischen der Trennbarkeit der Peaks und der Messunsicherheit durch gegenseitige Beeinflussung der Peaks.

- Erhöhen Sie den Wert, wenn der Controller Peaks aufteilt, die zusammen weiterverarbeitet werden sollen.
- Verringern Sie den Wert, wenn der Controller Peaks nicht trennt, die getrennt weiterverarbeitet werden sollen.

Beispiel 1: Mit der Defaulteinstellung wird keine Peaktrennung durchgeführt. Der Controller ermittelt aus dem Schwerpunkt im Videosignal einen Abstand. **Beispiel 2:** Mit einem geringeren Wert für die Peakmodulation erkennt der Controller zwei unabhängige Peaks im Videsignal und berechnet daraus die zwei Abstände.

Abb. 47 Beispiele für die Peakmodulation

Ein Ändern der Peakmodulation ist grundsätzlich nur in Sonderfällen erforderlich. Setzten Sie diese Funktion nur mit Bedacht ein.

6.2.8 Peakauswahl

Die Anzahl der Peaks kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden. Pro Kanal können bis zu sechs Peaks erkannt werden.

¹ Diese Funktion wird genutzt, wenn ein Material vor oder zwischen den Nutzpeaks noch kleinere Störpeaks aufweist, die durch dünne Schichten auf dem Messobjekt verursacht werden. Diese Funktion ist mit Bedacht einzusetzen und wendet sich ausschließlich an Produktspezialisten.

Die Auswahl der Peaks entscheidet darüber, welche Bereiche im Signal für die Abstandsbzw. Dickenmessung genutzt werden. Bei einem Messobjekt, das aus mehreren transparenten Schichten besteht, wird ein korrektes Messergebnis nur für den ersten Peak (Abstandsmessung) bzw. die ersten beiden Peaks (Dickenmessung) ermittelt.

Die Peaks werden beginnend bei Messbereichsanfang Richtung Messbereichsende gezählt.

1 Messwert	erster Peak / höchster Peak / letzter Peak
2 Messwerte	erster und zweiter Peak / höchster und zweithöchster Peak / vorletzter und letzter Peak
3 Messwerte	Individuell
4 Messwerte	Individuell
5 Messwerte	Individuell
6 Messwerte	Individuell

Abb. 48 Möglichkeiten der Peakauswahl

Die Ermittlung der Peakhöhen wird anhand des hellkorrigierten Signals durchgeführt.

Abb. 49 Ausschnitt Videosignal mit vier Peaks im Messbereich

In der Standardeinstellung wird die Brechzahlkorrektur durchgeführt. Können jedoch mehr als 2 Peaks im Messbereich liegen, dann sollten für eine korrekte Brechzahlkorrektur immer gleich viele Peaks vorhanden sein. Wenn z. B. der erste oder letzte Peak von 3 Peaks manchmal aus dem Messbereich läuft, sollte die Brechzahlkorrektur besser ausgeschaltet werden, da dann die Brechzahlkorrektur auf eine andere Schicht angewendet wird, also keine eindeutige Zuordnung des Materials möglich ist.

6.2.9 Materialauswahl

Das Messobjektmaterial kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

Über die Schaltfläche Materialtabelle bearbeiten kann die Materialdatenbank im Controller erweitert oder auch gekürzt werden. Für das neue Material ist eine Brechzahl und die Abbezahl v_d oder drei Brechzahlen bei verschiedenen Wellenlängen (näherungsweise auch alle gleich) nötig.

Abb. 51 Auswahl materialspezifischer Brechzahlen

6.3 Signalverarbeitung

6.3.1 Ausreißerkorrektur

Die Ausreißerkorrektur kann beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

Diese spezielle Filterung dient dazu, sehr hohe Ausreißer aus einem relativ konstanten Messwertverlauf zu entfernen, kleinere Spikes aber zu behalten. Ein Median würde alle Spitzen entfernen.

Die Bewertung, ob ein Messwert ein Ausreißer ist, erfolgt auf Basis des Mittelwertes einer bestimmten Anzahl vorheriger gültiger Messwerte. Mit dem Toleranzbereich wird die zulässige Abweichung des darauffolgenden Messwertes berechnet. Wenn der neue Messwert zu stark abweicht, wird er auf den vorherigen letzten Messwert korrigiert. Eine maximale Anzahl aufeinanderfolgende zu korrigierende Messwerte ist ebenfalls anzugeben.

Diese Funktion wirkt auf alle ausgegebenen Abstände gleichermaßen, die Differenzen (Dicken) werden auf Basis der korrigierten Abstände berechnet.

Achtung: Bei mehreren aufeinanderfolgenden Ausreißern geht der vorhergehende korrigierte Wert mit in die Korrektur des folgenden Messwertes ein. Nutzen Sie diese Funktion nur bei geeigneten Applikationen. Bei nicht sachgemäßer Anwendung kann es zu einer Verfälschung des Messwertverlaufs kommen! Prüfen Sie die mögliche Auswirkung eines geänderten Messwertverlaufs auf die Messumgebung und nachfolgende Steuerungen/Anlagen.

- Anzahl bewerteter Messwerte (max. 10): x
- Max. zulässiger Toleranzbereich (mm); bei Unter-/ Überschreitung greift die Ausreißerkorrektur: y
- Anzahl korrigierter Werte (max. 100): z

Beispiel: x = 3 / y = 0,05 / z = 1

Abb. 52 Messwertkorrektur

- Eliminieren von Ausreißern mit einer einstellbaren Schwelle
- Für hochdynamische Messwerterfassung schnell bewegter Messobjekte
- Bei Messwertsprüngen geeignet, insbesondere solche mit Störpeaks
- Bei Kantensprüngen mit zum Teil unsauberen Kantenübergängen
- Erfolgt vor allen anderen Mittelungsarten, ist kombinierbar

Abb. 53 Verschiedene Signale

6.3.2 Rechnung

Datenquelle, Parameter, Rechenprogramme 6.3.2.1

Die Rechenfunktion können beim IFC2422/2466 für beide Kanäle individuell gesetzt werden.

In jedem Berechnungsblock kann ein Rechenschritt durchgeführt werden. Hierzu müssen das Rechen-Programm, die Datenquellen und die Parameter des Rechen-Programmes eingestellt werden.

Dicke	Differenzbildung Zwei Signale oder Ergebnisse Signal Abstand B < Signal Ab		
Formel	Abstand A - Abstand B		
Berechnung	Summenbildung	Zwei Signale oder Ergebnisse	
Formel	Faktor 1 * Abstand A	A + Faktor 2 * Abstand B + Offset	
Median			
Gleitende Mittelung			
Rekursive Mittelung			

Abb. 54 Mögliche Rechenprogramme

Reihenfolge für das Anlegen eines Berechnungsblockes, siehe Abb. 55:

→	Wählen Sie ein Programm ① , z. B. Mittelwert, aus.		🔗 Rechnung 1 - Kanal 1
→	Definieren Sie die Parameter 2	1	Berechungsfunktion:) Berechung
→	Bestimmen Sie die Datenquelle(n) (3) .	2	Faktor 1:) -1,000
→	Geben Sie dem Block einen Namen ④ .	3	Abstand A: 01DIST1
•	Klicken Sie auf die Schaltfläche Rechnung speichern.	2	Faktor 2: Offset:) 1,000 Name:) DickeS1

Abb. 55 Reihenfolge bei der Programmauswahl

Die Programme Berechnung und Dicke besitzen zwei Datenquellen, die Mittelwertprogramme jeweils eine Datenquelle.

(5)

Berechnungs-Parameter	Faktor 1 / 2	Wert	-32768,0 32767,0	
(Programm Berechnung)	Offset	Wert	-2147,0 2147,0	
Berechnungs-Parameter (Programm Mittelwert)	Mittelungstyp	Rekursiv / Gleitend / Median		
	Mittelwerttiefe	Wert	Rekursiv: 2 32000	
			Gleitend: 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 / 2048 / 4096	
			Median: 3 / 5 / 7 / 9	
Die Mittelwerttiefe gibt an, über wie viele fortlaufende Messwerte im Controller gemittelt werden soll. bevor ein neuer Messwert ausgegeben wird.				

Grau hinterlegte Felder erfordern eine Auswahl. Dunkel umrandete Felder Wert erfordern die Angabe eines

Wertes.

confocalDT 2421/2422/2465/2466

Rechnung speichern

6.3.2.2 Definitionen

Abstandswert(e) von Kanal/Sensor 1	01DIST1, 01DIST2, 01DIST6	
Abstandswert(e) von Kanal/Sensor 2	02DIST1, 02DIST2, 02DIST6	
Pro Kanal/Sensor sind max 10 Berech- nungsblöcke möglich. Die Abarbeitung der Berechnungsblöcke erfolgt sequentiell.	OxDISTn Block 1 Block 2 OxDISTn Block 2 Block 1 Block 1	
Die Berechnungsblöcke im Menü Sig- nalverarbeitung verarbeiten lediglich Abstände oder Rechenergebnisse des jeweiligen Kanals/Sensors.	01DIST1 02DIST1 Biock 1 Berechnung	
Rückkoppelungen (algebraische Schleifen) über einen oder mehrere Blöcke sind nicht möglich. Als Datenquellen können nur die Abstandswerte bzw. die Rechenergebnisse der vorhergehenden Berechnungsblöcke verwendet werden.	Block 1 Berechnung	
Reihenfolge der Verarbeitung:		
1. Unlinearisierte Abstände		
2. Linearisierung der Abstände		
3. Brechzahlkorrektur der Abstände		
 Fehlerbehandlung bei keinem g ültigen Messwert 		
5. Ausreißerkorrektur der Abstände		
6. Berechnungsblöcke		
7. Statistik		

6.3.2.3 Messwertmittelung

Die Messwertmittelung erfolgt nach der Berechnung der Messwerte vor der Ausgabe über die Schnittstellen oder deren Weiterverarbeitung.

Durch die Messwertmittelung wird

- die Auflösung verbessert,
- das Ausblenden einzelner Störstellen ermöglicht oder
- das Messergebnis "geglättet".
- Das Linearitätsverhalten wird mit einer Mittelung nicht beeinflusst. Die Mittelung hat keinen Einfluss auf die Messrate bzw. Ausgaberate.

In jedem Messzyklus wird der interne Mittelwert neu berechnet.

 Der eingestellte Mittelwerttyp und die Anzahl der Werte müssen im Controller gespeichert werden, damit sie nach dem Ausschalten erhalten bleiben.

Der Controller wird ab Werk mit der Voreinstellung "gleitende Mittelung, Mittelwerttiefe = 16", d. h. mit Mittelwertbildung ausgeliefert.

Gleitender Mittelwert

Über die wählbare Anzahl N aufeinanderfolgender Messwerte (Fensterbreite) wird der arithmetische Mittelwert M_{al} nach folgender Formel gebildet und ausgegeben:

Jeder neue Messwert wird hinzugenommen, der erste (älteste) Messwert aus der Mittelung (aus dem Fenster) wieder herausgenommen. Dadurch werden kurze Einschwingzeiten bei Messwertsprüngen erzielt.

Beispiel: N = 4

... 0, 1,
$$(2, 2, 1, 3)$$

 $(2, 2, 1, 3)$
 $(2, 2, 1, 3)$
 $(2, 2, 1, 3)$
 $(2, 2, 1, 3)$
 $(2, 2, 1, 3)$
 $(2, 2, 1, 3)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3, 4)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2, 1, 3)$
 $(2,$

Bei der gleitenden Mittelung im Controller sind für die Mittelungszahl N nur die Potenzen von 2 zugelassen. Die größte Mittelungszahl ist 1024.

Abb. 56 Gleitendes Mittel, N = 8

- Glätten von Messwerten
- Die Wirkung kann fein dosiert werden im Vergleich zur rekursiven Mittelung
- Bei gleichmäßigem Rauschen der Messwerte ohne Spikes
- Bei geringfügig rauer Oberfläche, bei der die Rauheit eliminiert werden soll
- Auch für Messwertsprünge geeignet bei relativ kurzen Einschwingzeiten

Rekursiver Mittelwert

Formel:

$$M_{rek} (n) = \frac{MW_{(n)} + (N-1) \times M_{rek (n-1)}}{N} \qquad N = Mittelungszahl, N = 1 ... 32768$$

n = Messwertindex
M_{rek} = Mittelwert bzw. Ausgabewert

Jeder neue Messwert MW(n) wird gewichtet zur Summe der vorherigen Mittelwerte M $_{\rm rek}$ (n-1) hinzugefügt.

MM - Massuret

Die rekursive Mittelung erlaubt eine sehr starke Glättung der Messwerte, braucht aber sehr lange Einschwingzeiten bei Messwertsprüngen. Der rekursive Mittelwert zeigt Tiefpassverhalten.

Abb. 57 Rekursives Mittel, N = 8

- Erlaubt eine sehr starke Glättung der Messwerte. Lange Einschwingzeiten bei Messwertsprüngen (Tiefpassverhalten)
- Starke Glättung von Rauschen ohne große Spikes
- Für statische Messungen, um das Signalrauschen besonders stark zu glätten
- Für dynamische Messungen an rauen Messobjekt-Oberflächen, bei der die Rauheit eliminiert werden soll, z. B. Papierrauhigkeit an Papierbahnen
- Zur Eliminierung von Strukturen, z. B. Teile mit gleichmäßigen Rillenstrukturen, gerändelte Drehteile oder grob gefräste Teile
- Ungeeignet bei hochdynamischen Messungen

Median

Aus einer vorgewählten Anzahl von Messwerten wird der Median gebildet.

Bei der Bildung des Medians im Controller werden die einlaufenden Messwerte nach jeder Messung neu sortiert. Der mittlere Wert wird danach als Median ausgegeben.

Es werden 3, 5, 7 oder 9 Messwerte berücksichtigt. Damit lassen sich einzelne Störimpulse unterdrücken. Die Glättung der Messwertkurven ist jedoch nicht sehr stark.

Beispiel: Median aus fünf Messwerten

$$... 0 \ 1 \ \underline{2 \ 4 \ 5 \ 1 \ 3} \rightarrow Messwerte \text{ sortiert: } 1 \ 2 \ \underline{3} \ 4 \ 5 \qquad Median_{(n)} = 3$$
$$... 1 \ 2 \ \underline{4 \ 5 \ 1 \ 3 \ 5} \rightarrow Messwerte \text{ sortiert: } 1 \ 3 \ \underline{4} \ 5 \ 5 \qquad Median_{(n+1)} = 4$$

_____ Signal mit Mittelung

Abb. 58 Median, N = 7

- Glättung der Messwertkurve nicht sehr stark, eliminiert vor allem Ausreißer
- Unterdrückt einzelne Störimpulse
- Bei kurzen starken Signalpeaks (Spikes)
- Auch bei Kantensprüngen geeignet (nur geringer Einfluss)
- Bei rauer, staubiger oder schmutziger Umgebung, bei der Schmutzpartikel oder die Rauheit eliminiert werden sollen
- Zusätzliche Mittelung kann nach dem Medianfilter verwendet werden

6.4 Nachbearbeitung

6.4.1 Rechnung

6.4.1.1 Datenquelle, Parameter, Rechenprogramme

In jedem Berechnungsblock kann ein Rechenschritt durchgeführt werden. Hierzu müssen das Rechen-Programm, die Datenquellen und die Parameter des Rechen-Programmes eingestellt werden.

Dicke	Differenzbildung	Zwei Signale oder Ergebnisse, Signal Abstand B < Signal Abstand A	
Formel	Abstand A - Abstand B		
Berechnung	Summenbildung	Zwei Signale oder Ergebnisse	
Formel	Faktor 1 * Abstand A	A + Faktor 2 * Abstand B + Offset	
Median			
Gleitende Mittelung			
Rekursive Mittelung			

Abb. 61 Mögliche Rechenprogramme

Reihenfolge für das Anlegen eines Berechnungsblockes, siehe Abb. 62:

Wählen Sie ein Programm (1), z. B. Mittelwert, aus.	Rechnung 1 - Kanal 1
Definieren Sie die Parameter 2.	Berechungsfunktion:
Bestimmen Sie die Datenquelle(n) (3).	Faktor 1:
Geben Sie dem Block einen Namen ④.	Abstand A: 3 01DIST1
Klicken Sie auf die Schaltfläche Rechnung speichern.	Faktor 2: Offset: 2 1,000 Name: 4 DickeS1
Abb. 62 Reihenfolge bei der Programmauswahl	5 Rechnung speichern

Die Programme Berechnung und Dicke besitzen zwei Datenquellen, die Mittelwertprogramme jeweils eine Datenquelle.

Berechnungs-Parameter	Faktor 1 / 2	Wert	-32768,0 32767,0	
(Programm Berechnung)	Offset	Wert	-2147,0 2147,0	
Berechnungs-Parameter (Programm Mittelwert)	Mittelungstyp	Rekursiv / Gleitend / Median		
	Mittelwerttiefe	Wert	Rekursiv: 2 32000	
			Gleitend: 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 / 2048 / 4096	
			Median: 3 / 5 / 7 / 9	
Die Mittelwerttiefe gibt an, über wie viele fortlaufende Messwerte im Controller gemittelt werden soll, bevor ein neuer Messwert ausgegeben wird.				

Grau hinterlegte Felder erfordern eine Auswahl. Dunkel umrandete Felder erfordern die Angabe eines

Wertes.

confocaIDT 2421/2422/2465/2466

6.4.1.2 Definitionen

Abstandswert(e) von Kanal/Sensor 1	01DIST1, 01DIST2, 01DIST6		
Abstandswert(e) von Kanal/Sensor 2	02DIST1, 02DIST2, 02DIST6		
Es sind max. 10 Berechnungsblöcke mög- lich. Die Abarbeitung der Berechnungsblö- cke erfolgt sequentiell.	OxDISTn Block 1 Block 2 Block 2 Block 1 Block 1		
Rückkoppelungen (algebraische Schleifen) über einen oder mehrere Blöcke sind nicht möglich. Als Datenquellen können nur die Abstandswerte bzw. die Rechenergebnisse der vorhergehenden Berechnungsblöcke verwendet werden.	Block 1 Berechnung		
Reihenfolge der Verarbeitung:			
1. Unlinearisierte Abstände			
2. Linearisierung der Abstände			
3. Brechzahlkorrektur der Abstände			
4. Fehlerbehandlung bei keinem gültigen Messwert			
5. Ausreißerkorrektur der Abstände			
6. Berechnungsblöcke Signalverarbei- tung			
7. Berechnungsblöcke Nachbearbeitung			
8. Nullsetzen/Mastern			
9. Datenreduktion			
10. Datenausgabe			

6.4.1.3 Messwertmittelung

Die Messwertmittelung entspricht der Mittelung im Menü Signalverarbeitung, siehe 6.3.2.3.

Im Controller ist an zwei verschiedenen Bereichen eine Mittelung möglich:

- Bereich Signalverarbeitung
- Bereich Nachbearbeitung.

Die Mittelung wird für statische Messungen oder sich langsam ändernde Messwerte empfohlen. Eine Mittelung vermindert das Rauschens oder unterdrückt Ausreißer in den Messwerten.
6.4.2 Nullsetzen, Mastern

Durch Nullsetzen und Mastern können Sie den Messwert genau auf einen bestimmten Sollwert im Messbereich setzen. Der Ausgabebereich wird dadurch verschoben. Sinnvoll ist diese Funktion z. B. für mehrere nebeneinander messende Sensoren, bei der Dicken- und Planaritätsmessung. Bei der Dickenmessung eines transparenten Messobjektes ist die echte Dicke eines Masterobjektes als Masterwert einzugeben.

Masterwert	Wort	Angabe, z. B. der Dicke, eines Masterstückes.
in mm		Wertebereich: -2147,0 +2147,0 mm

Mastern wird zum Ausgleich von mechanischen Toleranzen im Messaufbau der Sensoren oder der Korrektur von zeitlichen (thermischen) Änderungen am Messsystem verwendet. Das Mastermaß, auch als Kalibriermaß bezeichnet, wird dabei als Sollwert vorgegeben.

Der beim Messen eines Masterobjektes am Controllerausgang ausgegebene Messwert ist der Masterwert. Das Nullsetzen ist eine Besonderheit des Masterns, weil hier der Masterwert "0" beträgt.

Die Funktion Mastern/Nullsetzen ist nicht kanalspezifisch. Der Controller kann bis zu 10 Mastersignale verwalten. Diese 10 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

- "Mastern" oder "Nullsetzen" erfordert ein Messobjekt im Messbereich. "Mastern" und "Nullsetzen" beeinflussen die Analog- und Digitalausgänge.
 - 1 Funktion starten bzw. stoppen.
- Auswahl eines bestimmten Signals oder Funktion auf alle definierten Signale (5) anwenden.
- 3 Schaltfläche zum Löschen eines Signals.
- 4 Signal für die Funktion auswählen, Masterwert zuweisen.
- ⁵ Übersicht aller vorhandenen Signale für die Funktion.

Abb. 63 Dialog zum Mastern, Übersicht der einzelnen Masterwerte

Beim Mastern wird die Ausgangskennlinie parallel verschoben. Die Kennlinienverschiebung verkleinert den nutzbaren Messbereich des Sensors, je weiter Masterwert und Masterposition voneinander entfernt sind.

Ablauf Mastern / Nullsetzen:

- Bringen Sie Messobjekt und Sensor in die gewünschte Position zueinander.
- Setzen Sie den Masterwert, Webinterface/ASCII.

Nach dem Mastern liefert der Controller neue Messwerte, bezogen auf den Masterwert. Durch ein Rücksetzen mit der Schaltfläche Masterwert rücksetzen wird wieder der Zustand vor dem Mastern eingestellt.

Abb. 64 Kennlinienverschiebung beim Mastern

Messung		Taste Multifunction
	- < 2 s	
to	ť1	•

Abb. 65 Ablaufdiagramm für Nullsetzen, Mastern (Taste Multifunction)

Messung	Taste Multifunction2 s < 5 s
t ₀	t ₂

Die Funktion Nullsetzen/Mastern kann mehrfach hintereinander angewendet werden.

Abb. 66 Ablaufdiagramm für die Rücknahme Nullsetzen, Mastern

6.4.3 Statistik

Der Controller leitet aus dem Ergebnis der Messung folgende Statistikwerte ab.

Die Statistikwerte werden aus den Messwerten innerhalb des Auswertebereiches berechnet. Der Auswertebereich wird mit jedem neuen Messwert aktualisiert. Die Statistikwerte werden im Webinterface, Bereich Messwertanzeige, angezeigt oder über die Schnittstellen ausgegeben.

Die Statistikwerte sind nicht kanalspezifisch. Der Controller kann bis zu 10 Statistiksignale verwalten. Diese 10 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

Abb. 67 Übersicht der einzelnen Statistikwerte

- 1 Über die Schaltfläche Statistikwert rücksetzen kann ein bestimmtes Signal oder alle Statistiksignale zurückgesetzt und damit ein neuer Auswertezyklus (Speicherperiode) eingeleitet werden. Am Beginn eines neuen Zyklus werden die alten Statistikwerte gelöscht.
- 2 Schaltfläche zum Löschen eines Signals.
- 3 Anzahl der Messwerte, über die Minimum, Maximum und Peak-to-Peak für ein Signal ermittelt werden. Der Wertebereich für die Berechnung kann zwischen 2 und 16384 (in Potenzen von 2) liegen oder alle Messwerte einschließen.
- 4 Signal für die Funktion auswählen.
- 5 Übersicht aller vorhandenen Signale für die Funktion.

Reihenfolge für das Anlegen einer Statistikauswertung:

- Wechseln Sie in den Reiter Einstellungen > Nachbearbeitung > Statistik.
- Wählen Sie ein Signal aus (4), für das die Statistikwerte berechnet werden sollen.
- **Bestimmen Sie mit** Statistikwert **den Auswertebereich**.

				Aus	werteber	eich N+1	1			
Mess- werte	10	11	12	11	10	12	14	13	12	11
Auswertebereich N						Zeit				

6.4.4 Triggerung Datenausgabe

6.4.4.1 Allgemein

Die Messwertausgabe am confocalDT 2421/2422/2465/2466 ist durch ein externes elektrisches Triggersignal oder per Kommando steuerbar. Dabei wird die analoge und digitale Ausgabe beeinflusst. Der Messwert zum Triggerzeitpunkt wird zeitversetzt ausgegeben.

- Die Triggerung hat keine Auswirkung auf die vorgewählte Messrate.
- Als externe Triggereingänge werden die Eingänge Sync/Trig oder TrigIn benutzt, siehe 4.4.10.
- Werkseinstellung: keine Triggerung, der Controller beginnt mit der Datenübertragung unmittelbar nach dem Einschalten.
- Die Pulsdauer des Triggersignals beträgt mindestens 5 µs.

		Pegel	Trigger-Level Low / High			
	Triana and		Trigger-Level	Fallende Flanke / St	eigende Flanke	
	Inggeran	Flanke	Anzahl an Maanwartan	manuelle Auswahl	Wert	
Sync/Trig			Anzani an Messwerten	unendlich		
	Abschlusswiderstand (für IFC246x, siehe 6.1.3)	Aus / An				
	Triggerart	Pegel	Trigger-Level	Low / High		
		Flanke	Trigger-Level	Fallende Flanke / Steigende Flanke		
TrigIn			Anzahl an Messwerten	manuelle Auswahl	Wert	
				unendlich		
	Eingangspegel	TTL / HTL				
Software		Anzahl der Messwerte	manuelle Auswahl	Wert		
		Alizalli del messwelle	unendlich			
			Untere Grenze		Wert	
Encoder 1/2		Obere Grenze		Wert		
		Schrittweite		Wert		
Inaktiv			kontinuierliche Messwertausgabe			

Pegel-Triggerung. Kontinuierliche Messwertausgabe, solange der gewählte Pegel anliegt. Danach beendet der Controller die Messwertausgabe. Die Pulsdauer muss mindestens eine Zykluszeit betragen. Die darauffolgende Pause muss ebenfalls mindestens eine Zykluszeit betragen.

W = Wegsignal

Abb. 69 Triggerung mit aktivem High-Pegel (U), zugehöriges Analogsignal (A) und Digitalsignal (D)

Flanken-Triggerung. Startet Messwertausgabe, sobald die gewählte Flanke am Triggereingang anliegt. Der Controller gibt bei erfüllter Triggerbedingung die festgelegte Anzahl an Messwerten aus. Wertebereich von 1 ... 16383. Nach Beendigung der Datenausgabe bleibt der Analogausgang auf dem letzten Wert stehen (Sample & Hold).

Die Pulsdauer muss mindestens 5 μ s betragen.

Abb. 70 Triggerung mit fallender Flanke (U), zugehöriges Analogsignal (A) und Digitalsignal (D)

Software-Triggerung. Startet die Messwertausgabe sobald ein Softwarebefehl (anstatt des Triggereinganges) oder die Schaltfläche Trigger auslösen betätigt wird.

Encoder-Triggerung. Startet die Messwertausgabe durch einen der beiden Encodereingänge. confocalDT 2421/2422/2465/2466

6.4.4.2 Triggerung der Messwertausgabe

Die Berechnung der Messwerte erfolgt fortlaufend und unabhängig vom Triggerereignis. Ein Triggerereignis löst nur die Ausgabe der Werte über eine digitale oder analoge Schnittstelle aus.

In die Berechnung der Mittelwerte oder Statistik gehen also die unmittelbar vor dem Triggerereignis gemessenen Werte ein.

Die Triggerung der Messwertaufnahme und -ausgabe haben das gleiche Zeitverhalten.

6.4.5 Datenreduktion, Ausgabe-Datenrate

Datenreduktion	Wert	Weist den Controller an, welche Daten von der Ausgabe ausgeschlossen werden und somit die zu übertragende Datenmenge reduziert wird.
Reduzierung gilt für	RS422 / Analog / Ethernet	Die für die Unterabtastung vorgesehenen Schnittstellen sind mit der Checkbox auszu- wählen.

Sie können die Messwertausgabe im Controller reduzieren, wenn Sie im Webinterface oder per Befehl die Ausgabe jedes n-ten Messwertes vorgeben. Die Datenreduktion bewirkt, dass nur jeder n-te Messwert ausgegeben wird. Die anderen Messwerte werden verworfen. Der Reduktionswert n kann von 1 (jeder Messwert) bis 3.000.000 gehen. Damit können Sie langsamere Prozesse, z. B. eine SPS, an den schnellen Controller anpassen, ohne die Messrate reduzieren zu müssen.

6.4.6 Fehlerbehandlung (Letzten Wert halten)

Kann kein gültiger Messwert ermittelt werden, wird ein Fehler ausgegeben. Wenn das bei der weiteren Verarbeitung stört, kann alternativ dazu der letzte gültige Wert über eine bestimmte Zeit gehalten, d. h. wiederholt ausgegeben werden.

Fehlerbe- handlung	Fehlerausgabe, kein Messwert	Schnittstellen geben anstatt der Messwerte einen Fehlerwert aus.		
	Letzten Wert unendlich halten	Schnittstellen geben den letzten gültigen Messwert aus, bis ein neuer gültiger Messwert zur Verfügung steht.		
	Letzten Wert halten	Wert	Die Anzahl der Werte, die gehalten werden sollen, kann zwischen 1 und 1024 liegen. Bei Anzahl = 0 wird der letzte Wert solange gehalten, bis ein neuer gültiger Messwert erscheint.	

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes.

6.5 Ausgänge

6.5.1 Digitale Schnittstellen

Auswahl Digitale Schnittstelle	RS422 / Ethernet / Fehleraus- gang (Schaltausgänge)	Entscheidet über die genutzte Schnittste für die Datenausgabe. Eine parallele Dat ausgabe über mehrere Kanäle ist möglic	
RS422	Baudrate	9,6 / 115,2 / 2 921,6 / 2000	230,4 460,8 691,2 3000 4000 kBps
Ethernet	IP-Einstellungen Grundgerät	statische IP-Adresse / DHCP	Werte für IP-Adresse / Gateway / Subnetz- Maske. Nur bei statischer IP- Adresse
	Einstellungen der Ethernet Messwertübertragung	Server TCP	Wert für Port

6.5.1.1 Schnittstelle RS422

Die Schnittstelle RS422 hat eine maximale Baudrate von 4000 kBaud. Die Baudrate ist im Auslieferungszustand auf 115,2 kBaud eingestellt. Die Konfiguration erfolgt über ASCII-Befehle oder über das Webinterface.

Die Übertragungseinstellungen von Controller und PC müssen übereinstimmen.

Datenformat: Binär. Schnittstellenparameter: 8 Datenbits, keine Parität, 1 Stoppbit (8N1). Die Baudrate ist wählbar.

Über die Schnittstelle RS422 werden 18 Bit pro Ausgabewert übertragen.

Die Höchstanzahl an Messwerten, die für einen Messpunkt übertragen werden können, hängen von der Controller-Messrate und der eingestellten Übertragungsrate der RS422-Schnittstelle ab. Soweit wie möglich sollte die höchste vorhandene Übertragungsrate (Baudrate) verwendet werden, siehe A 5.3.13.

6.5.1.2 Ethernet

Bei Verwendung einer statischen IP-Adresse sind die Werte für IP-Adresse, Gateway und Subnetz-Maske anzugeben; dies entfällt bei Verwendung von DHCP.

Der Controller ist ab Werk auf die statische IP-Adresse 169.254.168.150 eingestellt.

Der Controller überträgt die Ethernetpakete mit einer Übertragungsrate von 10 MBit/s oder 100 MBit/s, die je nach angeschlossenem Netzwerk oder PC automatisch eingestellt wird.

Alle Ausgabewerte und zusätzlich zu übertragenden Informationen, die zu einem Zeitpunkt aufgenommen wurden, werden zu einem Messwert-Frame zusammengefasst. Mehrere Messwert-Frames werden zu einem Messwert-Block zusammengefasst. Es wird ein Header an den Anfang zu jedem Messwertpaket hinzugefügt.

Bei der Messwertdatenübertragung sendet der Controller nach erfolgreichen Verbindungsaufbau jeden Messwert (Messwert-Block) an die verbundene Gegenstelle. Dafür ist keine explizite Anforderung erforderlich.

Bei Änderungen der übertragenen Daten oder der Framerate wird automatisch ein neuer Header geschickt. Die Abstands- und Dickenmesswerte werden als 32 Bit signed Integer-Wert mit einer Auflösung von 1 nm übertragen.

Dieser Messwert-Block kann je nach Größe des Videosignals auch aus mehreren Ethernetpaketen bestehen.

6.5.1.3 Datenausgabe RS422, Ethernet

Die Auswahl der Ausgabedaten aus allen intern bestimmten Werten und den berechneten Werten aus den Rechenmodulen erfolgt getrennt für beide Schnittstellen. Diese werden in einer festen Reihenfolge ausgegeben. Die Auswahl für Ethernet umfasst die Signale für den Messwerttransfer sowie Videodaten, jedoch nicht das Webdiagramm.

Sensor	Datenausgabe R\$422		
📀 Eingänge	Signale:		
S Messwertaufnahme	01RAW		
Signalverarbeitung	01DARK		
•	01LIGHT		
Vachbear beitung	02RAW		
Ausgänge	02DARK		
RS422 (115.2 kBps	02LIGHT		
Datenausgabe RS422	01SHUTTER		
Ethernet Einstellungen	01ENCODER1		
Static: 169.254.168.150: 25	01ENCODER2		
Datenausgabe Ethernet 6 von 29	o1INTENSITY		
Analogausgang	01DIST1		

Abb. 71 Auswahl der Ausgabedaten

6.5.2 Analogausgang

Es kann nur ein Messwert übertragen werden. Die Auflösung des Analogausganges beträgt 16 Bit.

Ausgangssignal	01DIST1 / 01DIST6 / 02DIST1 / 02DIST6 /	Die Datenauswahl ist abhängig von den aktuellen Einstellungen und umfasst neber den Abstandswerten auch die Ergebnisse aus den Rechenmodulen.	
Ausgabebereich	4 20 mA / 0 5 V / 0 10 V	Am Controller kann wahlweise nur der Spannungs- oder der Stromausgang ge- nutzt werden.	
Skalierung	Standardskalierung	Skalierung auf 0 Messbereich	
	Zweipunktskalierung	Bereichsanfang entspricht (in mm):	Wert
		Bereichsende entspricht (in mm):	Wert

Der erste Wert entspricht dem Messbereichsanfang, der zweite Wert dem Messbereichsende. Soll der Analogbereich verschoben werden, empfiehlt sich die Funktion Nullsetzen/Mastern zu verwenden.

Die Zweipunktskalierung ermöglicht die getrennte Vorgabe von Bereichsanfang und -ende in Millimeter im Messbereich des Sensors. Der verfügbare Ausgabebereich des Analogausgangs wird dann zwischen dem minimalen und maximalen Messwert gespreizt. Damit sind auch fallende Analogkennlinien möglich, siehe Abb. 72.

Abb. 72 Skalierung des Analogsignals

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes.

6.5.2.1 Berechnung Messwert aus Stromausgang

Stromausgang (ohne Mastern, ohne Zweipunktskalierung)

Variablen	Wertebereich	Formel
I = Strom [mA]	[3,8; <4] MBA-Reserve [4: 20] Messbereich	
001	[>20; 20,2] MBE-Reserve	(I _{OUT} [mA] - 4)
MB = Messbereich [mm]	{0,1/0,3/0,4/1/1,5/2/2,5/2/3/3,5/4/6/6,5/ 10/28/30}	d [mm] = <u>16</u> * MB [mm]
d = Abstand [mm]	[-0,01MB; 1,01MB]	

Stromausgang (mit Zweipunktskalierung)

Variablen	Wertebereich	Formel
I _{OUT} = Strom [mA]	[3,8; <4] MBA-Reserve [4; 20] Messbereich [>20; 20,2] MBE-Reserve	
MB = Messbereich [mm]	{0,1/0,3/0,4/1/1,5/2/2,5/2/3/3,5/4/6/6,5/ 10/28/30}	$d [mm] = \frac{(I_{OUT} [mA] - 4)}{16} * n [mm] - m [mm] $
m, n = Teachbereich [mm]	[0; MB]	
d = Abstand [mm]	[m; n]	

6.5.2.2 Berechnung Messwert aus Spannungsausgang

Spannungsausgang (ohne Mastern, ohne Zweipunktskalierung)

Variablen	Wertebereich	Formel
	[-0,05; <0] MBA-Reserve [0; 5] Messbereich [>5; 5,05] MBE-Reserve	$d [mm] = \frac{U_{OUT} [V]}{5} * MB [mm]$
o _{out} = spannung [v]	[-0,1; <0] MBA-Reserve [0; 10] Messbereich [>10; 10,1] MBE-Reserve	d [mm] = $\frac{U_{OUT} [V]}{10} * MB [mm]$
MB = Messbereich [mm]	{0,1/0,3/0,4/1/1,5/2/2,5/2/3/3,5/4/6/6,5/ 10/28/30}	
d = Abstand [mm]	[-0,01MB; 1,01MB]	

Spannungsausgang (mit Zweipunktskalierung)

Variablen	Wertebereich	Formel
	[-0,05; <0] MBA-Reserve [0; 5] Messbereich [>5; 5,05] MBE-Reserve	d [mm] = $\frac{U_{OUT} [V]}{5} * n [mm] - m [mm] $
$O_{OUT} = Spannung [V]$	[-0,1; <0] MBA-Reserve [0; 10] Messbereich [>10; 10,1] MBE-Reserve	$d [mm] = \frac{U_{OUT} [V]}{10} * n [mm] - m [mm] $
MB = Messbereich [mm]	{0,1/0,3/0,4/1/1,5/2/2,5/2/3/3,5/4/6/6,5/ 10/28/30}	
m, n = Teachbereich [mm]	[0; MB]	
d = Abstand [mm]	[m; n]	

6.5.2.3 Verhalten Abstandswert und Analogausgang

Die Funktion Nullsetzen (Masterwert = Null) setzt den Analogausgang auf die Hälfte des Ausgabebereichs: Stromausgang 12 mA; Spannungsausgang 2,5 V bzw. 5 V. Die Funktion Mastern (Masterwert \neq Null) setzt den Analogausgang auf den skalierten Wert für den Masterwert. Die Beispiele zeigen das Verhalten des Stromausgangs und des Abstandswertes am Beispiel eines IFS2404-2, Messbereich 2 mm.

MB = Messbereich, MBA = Messbereichsanfang, MBE = Messbereichsende, MW = Masterwert

Die Beispiele zeigen das Verhalten des Spannungsausgangs und des Abstandswertes am Beispiel eines IMP Weg, Messbereich 2 mm.

Messobjekt befindet sich bei 16 % Messbereich,

Analogausgang erreicht bei 66 % MB Maximalwert

Analogausgang erreicht bei 20 % MB seinen Minimalwert

confocaIDT 2421/2422/2465/2466

Fehlerausgang 1 <i>"Error 1"</i> Fehlerausgang 2 <i>"Error 2"</i>	Intensitätsfehler Kanal 1 / Messbereichsfehler Kanal 1 / Intensität oder Messbereichsfehler Kanal 1 / Intensitätsfehler Kanal 2 / Messbereichsfehler Kanal 2 / Intensität oder Messbereichsfehler Kanal 2 Intensität oder Messbereichsfehler Kanäle 1 2 Abstand ist außerhalb der Grenzwerte		
Schaltpegel bei Fehler	PNP / NPN / Push-Pull / Push-Pull negiert		
Grenzwerte	Grenzwert (in mm)	Wert	
	Grenzwert (in mm)	Wert	
	Funktion lower / upper / both		

6.5.3 Fehlerausgang, Schaltausgänge

6.5.3.1 Belegung der Schaltausgänge (Digital I/O)

Die Schaltausgänge "Error 1" und Error 2" auf der Klemmleiste "Digital I/O" können verschiedenen Fehlern und Grenzwerten unabhängig zugeordnet werden.

Ab Werk ist der Schaltausgang "Error 1" mit "Intensitätsfehler" (F1, Peak zu hoch oder zu niedrig) und der Schaltausgang "Error 2" mit "Außerhalb des Messbereichs (F2)" belegt.

Beide Schaltausgänge werden aktiviert, wenn sich das Messobjekt außerhalb des Messbereiches befindet.

6.5.3.2 Grenzwerteinstellung

Wahlweise können die Schaltausgänge "Error 1" und "Error 2" auch zur Grenzwertüberwachung genutzt werden. Bei Über- bzw. Unterschreitung eines Grenzwertes werden die Schaltausgänge aktiviert. Dazu sind ein unterer und oberer Grenzwert (in mm) einzugeben.

Abb. 73 Schaltausgang 1 (beide, NPN) und Schaltausgang 2 (unterer, PNP) mit Grenzwerte

6.5.3.3 Schaltlogik der Fehlerausgänge

Hinweise zum Schaltverhalten finden Sie bei den elektrischen Anschlüssen, siehe 4.4.8.

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes.

6.5.4 Datenausgabe, Auswahl Schnittstelle

Der Controller IFC2421/2422/2465/2466 hat drei digitale Schnittstellen, die parallel zur Datenausgabe genutzt werden können.

- Ethernet: ermöglicht eine schnelle nicht echtzeitfähige Datenübertragung (paketbasierter Datentransfer). Es können Messwert- sowie Videodaten übertragen werden. Für eine Messwert-Erfassung ohne unmittelbare Prozess-Steuerung, für eine nachfolgende Analyse. Die Parametrierung erfolgt durch das Webinterface oder ASCII-Befehssatz.
- RS422: stellt eine echtzeitfähige Schnittstelle mit geringerer Datenrate bereit.
- Fehlerausgang

6.6 Systemeinstellungen

6.6.1 Einheit Webinterface

Das Webinterface unterstützt in der Darstellung der Messergebnisse die Einheiten Millimeter (mm) und Zoll (Inch). Als Sprache ist im Webinterface Deutsch oder Englisch möglich. Wechseln Sie die Sprache in der Menüleiste.

6.6.2 Tastensperre

Die Tastensperre verhindert unbefugtes oder ungewolltes Ausführen der Tastenfunktionen. Eine Tastensperre kann individuell für die Taste Multifunction eingerichtet werden.

Tastensperre	Automatisch	Wert (1 60 min)	Die Tastenfunktion wird nach Ablauf einer definierten Zeit blockiert.
	Aktiv		Die Tastenfunktion wird unmittelbar blockiert
	Inaktiv		Keine Tastensperre

6.6.3 Laden und Speichern

Dieses Kapitel beschreibt, wie ein Setup entweder mit Messeinstellungen oder mit Geräteeinstellungen gesichert wird. Hier finden Sie auch die Funktionen für den Import und Export der Setups, siehe 5.11.

6.6.4 Zugriffsberechtigung

Die Vergabe eines Passwortes verhindert unbefugtes Ändern von Einstellungen am Controller. Im Auslieferungszustand ist der Passwortschutz nicht aktiviert. Der Controller arbeitet in der Benutzerebene Experte. Nach erfolgter Konfiguration des Controllers sollte der Passwortschutz aktiviert werden. Das Standard-Passwort für die Expertenebene lautet "000".

- Das Standard-Passwort oder ein benutzerdefiniertes Passwort wird durch ein
 Software-Update nicht geändert. Das Experten-Passwort ist unabhängig vom Setup
- und wird damit auch nicht mit dem Setup zusammen geladen oder gespeichert.

Für den Bediener sind folgende Funktionen zugänglich:

	Bediener	Experte
Passwort erforderlich	nein	ja
Einstellungen ansehen	ja	ja
Einstellungen ändern, Passwort ändern	nein	ja
Messwerte, Videosignal ansehen	ja	ја
Skalierung Diagramme	ja	ja
Werkseinstellung setzen	nein	ja

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes

Abb. 74 Rechte in der Benutzerhierarchie

Zugriffsberechtigung	Tippen Sie da ein benutzerd
Aktuelle Zugriffsberechtigung:	Passwort e i mit Anmelder
Bediener 📀	
Passwort für die Anmeldung als Experte:	
PASSWORD	
Login:	
Anmelden	
Logout:	
Abmelden	
	Abb 75 Wech

Tippen Sie das Standard-Passwort "000" oder ein benutzerdefiniertes Passwort in das Feld Passwort ein und bestätigen Sie die Eingabe mit Anmelden.

Abb. 75 Wechsel in die Benutzerebene Experte

Die Benutzerverwaltung ermöglicht die Vergabe eines benutzerdefinierten Passwortes in der Betriebsart Experte.

Passwort	Wert	Bei allen Passwörtern wird die Groß/Kleinschreibung beachtet, Zahlen sind erlaubt. Sonderzeichen sind nicht zugelassen.
Benutzer-Level beim Einschalten	Bediener / Experte	Legt die Benutzerebene fest, mit der der Controller nach dem Wiedereinschalten startet. Micro-Epsilon empfiehlt hier die Auswahl Experte.

6.6.5 Controller rücksetzen

In diesem Menübereich können Sie einzelne Einstellungen auf die Werkseinstellung zurücksetzen.

Geräteeinstellungen	Alle Einstellungen für die Schnittstellen Ethernet und RS422 auf Werkseinstellung setzen.
Messeinstellungen	Setzt das Preset auf Standard matt, die Taste Multifunction auf Dunkelabgleich und alle Parameter, ausgenommen Schnittstelleneinstel- lungen, auf die Werkseinstellung zurück.
Alles zurücksetzen	Setzt die Geräte- und die Messeinstellungen auf die Werkseinstellungen zurück.
Controller neu starten	Startet den Controller mit den zuletzt gespeicher- ten Einstellungen

6.6.6 Lichtquelle

Die Lichtquellen können beim IFC2422 und IFC2466 für beide Kanäle individuell gesetzt werden. Sie können die Lichtquelle für Sensor 1 oder Sensor 2 ein- oder ausschalten.

6.6.7 Wechsel Ethernet EtherCAT

Diese Einstellung bestimmt das Verbindungsprotokoll, wenn der Controller gestartet wird.

Die Umschaltung zwischen Ethernet und EtherCAT ist auch über einen ASCII-Befehl, siehe A 5.3.7.5, oder EtherCAT-Objekt, siehe A 5.2, möglich.

Speichern Sie vor dem Wechsel zu EtherCAT die aktuellen Einstellungen. Die Umschaltung erfolgt erst nach einem Neustart des Controllers.

Die RS422-Schnittstelle für das Senden eines ASCII-Befehls ist sowohl im Ethernet-Mode als auch im EtherCAT-Mode verfügbar.

7. Dickenmessung

7.1 Einseitig, transparentes Messobjekt

7.1.1 Voraussetzung

Für eine einseitige Dickenmessung eines transparenten Messobjektes wertet der Controller zwei an den Oberflächen reflektierte Signale aus. Der Controller berechnet aus beiden Signalen die Abstände zu den Oberflächen und daraus die Dicke.

- Richten Sie den Sensor senkrecht auf das zu messende Objekt. Achten Sie darauf, dass sich das Messobjekt in etwa in Messbereichsmitte (= $MBA + 0.5 \times MB$) befindet.
- Der Lichtstrahl muss senkrecht auf die Objektoberfläche treffen, andernfalls sind 1
 - Messunsicherheiten nicht auszuschließen.

Abb. 76 Einseitige Dickenmessung an einem transparenten Messobjekt

MBA	Messbereichsanfang
MB	Messbereich
	IFS2403 (Hybridsensor) ca. 15 % vom Messbereich
Minimale Messobjektdicke	IFS2405 (Standardsensor) ca. 5 % vom Messbereich, siehe 2.6.
Maximale Messobjektdicke	Sensormessbereich x Brechungsindex Messobjekt

7.1.2 Preset

Wechseln Sie in das Menü Home.

Wählen Sie in der Konfigurationsauswahl Einseitige Dickenmessung.

Diese Voreinstellung veranlasst den Controller den ersten und zweiten Peak im Videosignal für die Dickenberechnung zu verwenden.

7.1.3 **Materialauswahl**

Für die Berechnung eines korrekten Dickenmesswertes ist die Angabe des Materials unerlässlich. Um die spektrale Änderung des Brechungsindex auszugleichen, sollten wenigstens drei Brechzahlen bei verschiedenen Wellenlängen oder eine Brechzahl und die Abbezahl bekannt sein.

- 🕨 Wechseln Sie in das Menü Einstellungen > Messwertaufnahme >Materialauswahl.
- Wählen Sie für Schicht 1 den Werkstoff des Messobjektes aus.

7.1.4 Videosignal

Befindet sich eine Oberfläche des Messobjekts außerhalb des Messbereichs, liefert der Controller nur ein Signal für den Weg, die Intensität und den Schwerpunkt. Dies kann auch der Fall sein, wenn ein Signal unterhalb der Erkennungsschwelle liegt.

Bei der Dickenmessung eines transparenten Materials sind zwei Grenzflächen aktiv. Im Videosignal sind dementsprechend auch zwei Peaks sichtbar, siehe Abb. 77.

Auch wenn die Erkennungsschwelle einmal knapp unterhalb des Sattels zwischen den beiden Peaks liegen sollte, kann der Controller beide Abstände ermitteln und daraus die Dicke errechnen.

Abb. 77 Webseite Videosignal (Dickenmessung)

7.1.5 Signalverarbeitung

Die Konfigurationsauswahl Einseitige Dickenmessung enthält auch Voreinstellungen für die Dickenberechnung aus den beiden Abstandssignalen Weg1 und Weg2, siehe Abb. 77.

Im nachgelagerten zweiten Berechnungsblock Rechnung 2 durchlaufen die Dickenwerte eine gleitende Mittelung mit einer Mittelungstiefe von 16 Werten.

Passen Sie die Signalverarbeitung Ihrer Messaufgabe an.

Sensor	Rechnung 1 - Kanal 1
Singänge	Berechungsfunktion:
Messwertaufnahme	Berechung
	Faktor 1:
Signalverarbeitung	-1,000
Kanal 1 Kanal 2	Abstand A:
Ausreißerkorrektur	01DIST1 📀
Aus	Faktor 2:
$\tau = \frac{n-1}{2}$ Rechnung 1	1,000
Berechung: -1.000: 01DIST	Abstand B:
$\tau = \frac{n-1}{2}$ Rechnung 2	01DIST2
2 MOVING	Offset:
+ Rechenmodul hinzufügen	0,000
	Name:
Nachbearbeitung	Ch01Thick12
A	
Ausgange	Rechnung speichern

7.1.6 Messwertanzeige

Wechseln Sie in den Reiter Messwertanzeige und wählen Sie als Diagrammtyp Mess.

Abb. 78 Dickenmessergebnisse aus einseitiger Dickenmessung mit einem Sensor

In der Webseite werden die beiden Abstände und die Dicke (Differenz aus 01DIST2 und 01DIST1) grafisch und numerisch gezeigt, wahlweise können auch die Intensitäten für beide Peaks (Peak 1 = nah, Peak 2 = fern) eingeblendet werden.

7.2 Zweiseitige Dickenmessung

7.2.1 Voraussetzung

Für eine zweiseitige Dickenmessung messen zwei gegenüberliegend Sensoren gegen das Messobjekt. Der Controller wertet die beiden an den Oberflächen reflektierten Signale aus. Der Controller berechnet aus beiden Signalen die Abstände zu den Oberflächen und daraus die Dicke.

- Richten Sie die beiden Sensoren senkrecht auf das zu messende Objekt aus. Achten Sie darauf, dass sich das Messobjekt in etwa in Messbereichsmitte (= MBA + 0,5 x MB) befindet.
- Der Lichtstrahl muss senkrecht auf die Objektoberfläche treffen, andernfalls sind Messunsicherheiten nicht auszuschließen.

Abb. 79 Gegenüberliegende Dickenmessung an einem Messobjekt

MBA	Messbereichsanfang
MB	Messbereich
Maximale Messobjektdicke	Schnittmenge aus beiden Sensormessbereichen

7.2.2 Preset

- Wechseln Sie in das Menü Home.
- Wählen Sie in der Konfigurationsauswahl Gegenüberliegende Dickenmessung.

Diese Voreinstellung veranlasst den Controller jeweils den ersten Peak im Videosignal für die Dickenberechnung zu verwenden.

7.2.3 Videosignal

Befindet sich eine Oberfläche des Messobjekts außerhalb des Messbereichs, liefert der Controller nur ein Signal für den Weg, die Intensität und den Schwerpunkt. Dies kann auch der Fall sein, wenn ein Signal unterhalb der Erkennungsschwelle liegt.

Auch wenn die Erkennungsschwelle einmal knapp unterhalb des Sattels zwischen den beiden Peaks liegen sollte, kann der Controller beide Abstände ermitteln und daraus die Dicke errechnen.

Abb. 80 Webseite Videosignal, Darstellung für beide Kanäle

Wechseln Sie zwischen den beiden Kanälen und beobachten Sie die Intensität der Videosignale. Passen Sie bei Bedarf die Messrate an, um die Intensität zu erhöhen.

7.2.4 Nachbearbeitung

Die Konfigurationsauswahl Gegenüberliegende Dickenmessung enthält auch Voreinstellungen für die Dickenberechnung aus den beiden Abstandssignalen Weg 1 und Weg 2.

Im Berechnungsblock Rechnung 1 werden die beiden Abstandssignale 01DIST1 und 02DIST1 vom Abstand Offset der beiden Sensoren zueinander abgezogen.

- Passen Sie den Wert für den Offset Ihrer Messanordnung an. Wertebereich [-2048 ... 2047].
- Speichern Sie die Änderung mit der Schaltfläche Rechnung speichern.

Sensor		ŕ	🔗 Rechnung 1
Eingänge			Berechungsfunktion:
Messwertaufnahme			Berechung 📀
Signalverarbeitung			Faktor 1:
Nachhearbeitung			-1
Rechnung 1			01DIST1
$\tau = \frac{n-1}{2}$ Berechung: -1.000: 01DIST		E	Faktor 2:
$\tau = \frac{n-1}{2}$ Rechnung 2	0		-1
² 2 MOVING			Abstand B:
+ Rechenmodul hinzufügen			02DIST1
			Offset:
Nullsetzen/Mastern	Ø		21
			Name:
Triggern (Datenausgabe)	Ø		Thick
Datenreduktion	~		Rechnung speichern

Im nachgelagerten zweiten Berechnungsblock Rechnung 2 durchlaufen die Dickenwerte eine gleitende Mittelung mit einer Mittelungstiefe von 16 Werten.

Passen Sie die Nachbearbeitung Ihrer Messaufgabe an.

7.2.5 Messwertanzeige

Wechseln Sie in den Reiter Messwertanzeige und wählen Sie als Diagrammtyp Mess.

Abb. 81 Dickenmessergebnisse aus gegenüberliegender Dickenmessung mit zwei Sensoren

In der Webseite werden die beiden Abstände (01DIST2 und 01DIST1) und die Dicke Thick grafisch und numerisch gezeigt, wahlweise können auch die Intensitäten für beide Peaks (Peak 1 = nah, Peak 2 = fern) eingeblendet werden.

8. Fehler, Reparatur

8.1 Kommunikation Webinterface

- Wenn eine Fehlerseite im Webbrowser angezeigt wird, pr
 üfen sie bitte folgende Punkte.
- Prüfung des korrekten Anschlusses des Controllers, siehe 5.1
- Pr
 üfung der IP-Konfiguration von PC und Controller, Auffinden des Controllers mit dem Programm sensorTOOL, siehe 5.2.1.
 Bei direkter Verbindung von Controller und PC kann die Vereinbarung der IP-Adressen bis zu zwei Minuten dauern.
- Prüfung der verwendeten Proxy-Einstellungen. Wenn der Controller über eine separate Netzwerkkarte mit dem PC verbunden ist, dann ist es erforderlich, die Verwendung eines Proxy-Servers für diese Verbindung zu deaktivieren. Bitte fragen Sie dazu Ihren Netzwerkverantwortlichen oder Administrator!

8.2 Wechsel des Sensorkabels an den Sensoren IFS2405 und IFS2406

- Lösen Sie die Schutzhülse am Sensor. Entfernen Sie das defekte Sensorkabel.
- Führen Sie das neue Sensorkabel durch die Schutzhülse.
- Entfernen Sie die Schutzkappe am Sensorkabel und bewahren Sie diese auf.
- Führen Sie die Führungsnase des Sensorsteckers in die Nut der Buchse.
- Verschrauben Sie Sensorstecker und Sensorbuchse.
- Schrauben Sie die Schutzhülse wieder auf den Sensor.
- Führen Sie den Dunkelabgleich durch, siehe 5.5.

8.3 Wechsel der Schutzscheibe an den Sensoren IFS2405 und IFS2406

Ein Wechsel der Schutzscheibe ist erforderlich bei

- irreversibler Verschmutzung,
- Kratzer.
- Chne Schutzscheibe darf der Sensor nicht verwendet werden, da sich dadurch die
- I Messgenauigkeit verschlechtert.

8.3.1 IFS2405/IFS2406

Lösen Sie die vordere Fassung inkl. Schutzscheibe am Sensor.

- Entnehmen Sie die Dichtung und legen Sie den O-Ring in die Fassungsnut der neuen Schutzscheibe ein.
- Schrauben Sie die neue Fassung inkl. Schutzscheibe wieder auf den Sensor.

8.3.2 IFS2406/90-2,5

Lösen Sie die beiden Gewindestifte am Sensor, siehe Abb. 82, und schieben Sie die Schutzscheibe heraus, siehe Abb. 83.

- Abb. 83 Sensoransicht von unten
- Schieben Sie die neue Schutzscheibe bündig wieder ein und klemmen Sie die Schutzscheibe mit den Gewindestiften wieder fest.

9. Software-Update

Systemvoraussetzungen für ein Software-Update am Controller

- Verbinden Sie den Controller ("Ethernet"-Buchse) mit einem PC durch eine Ethernet-Direktverbindung (LAN). Verwenden Sie dazu ein LAN-Kabel mit RJ-45-Steckern.
- Durch das Update wird die Parametereinstellung nicht beeinflusst. Neu hinzukom-
- I mende Parameter werden auf die Defaultwerte gesetzt.

Update

Das aktuelle Firmware-Update Tool Update_Sensor_Ethernet.exe dazu finden Sie auf unserer Webseite unter:

www.micro-epsilon.de/download/software/confocalCDT_Update_Sensor_Ethernet.zip

Die aktuelle Firmware erhalten Sie unter www.micro-epsilon.de/service/download/software/ im Bereich confocalDT - Konfokale Sensoren.

Bei Fragen können Sie gerne den entsprechenden Vertriebsmitarbeiter in unserem Hause kontaktieren.

10. Softwareunterstützung mit MEDAQLib

Mit MEDAQLib steht Ihnen eine dokumentierte Treiber-DLL zur Verfügung. Damit binden Sie das konfokale Messsystem in eine bestehende oder kundeneigene PC-Software ein.

Verbindungsmöglichkeiten:

- RS422/USB-Konverter (optionales Zubehör) und passendem Anschlusskabel SC2471-x/USB/IND oder
- PCI-Interfacekarte IF 2008 und Anschlusskabel SC2471-x/IF2008 oder
- Ethernet.

Um den Controller ansprechen zu können, ist kein Wissen über das unterliegende Protokoll des jeweiligen Controllers notwendig. Die einzelnen Kommandos und Parameter für den anzusprechenden Controller werden über eine abstrakte Funktionen gesetzt, und von der MEDAQLib entsprechend in das Protokoll des Controllers umgesetzt.

MEDAQLib

- enthält eine DLL, die in C, C++, VB, Delphi und viele weitere Programme importiert werden kann,
- nimmt Ihnen die Datenkonvertierung ab,
- funktioniert unabhängig vom verwendeten Schnittstellentyp,
- zeichnet sich durch gleiche Funktionen für die Kommunikation (Befehle) aus,
- bietet ein einheitliches Übertragungsformat für alle Sensoren von Micro-Epsilon.

Für C/C++-Programmierer ist in MEDAQLib eine zusätzliche Header-Datei und eine Library-Datei integriert.

Die aktuelle Treiberroutine inklusive Dokumentation finden Sie unter:

www.micro-epsilon.de/download www.micro-epsilon.de/link/software/medaqlib

11. Haftungsausschluss

Alle Komponenten des Gerätes wurden im Werk auf die Funktionsfähigkeit hin überprüft und getestet. Sollten jedoch trotz sorgfältiger Qualitätskontrolle Fehler auftreten, so sind diese umgehend an Micro-Epsilon oder den Händler zu melden.

Micro-Epsilon übernimmt keinerlei Haftung für Schäden, Verluste oder Kosten, die z.B. durch

- Nichtbeachtung dieser Anleitung / dieses Handbuches,

- Nicht bestimmungsgemäße Verwendung oder durch unsachgemäße Behandlung (insbesondere durch unsachgemäße Montage, - Inbetriebnahme, - Bedienung und - Wartung) des Produktes,

- Reparaturen oder Veränderungen durch Dritte,
- Gewalteinwirkung oder sonstige Handlungen von nicht qualifizierten Personen

am Produkt entstehen, entstanden sind oder in irgendeiner Weise damit zusammenhängen, insbesondere Folgeschäden.

Diese Haftungsbeschränkung gilt auch bei Defekten, die sich aus normaler Abnutzung (z. B. an Verschleißteilen) ergeben, sowie bei Nichteinhaltung der vorgegebenen Wartungsintervalle (sofern zutreffend).

Für Reparaturen ist ausschließlich Micro-Epsilon zuständig. Es ist nicht gestattet, eigenmächtige bauliche und/oder technische Veränderungen oder Umbauten am Produkt vorzunehmen. Im Interesse der Weiterentwicklung behält sich Micro-Epsilon das Recht auf Konstruktionsänderungen vor.

Im Übrigen gelten die Allgemeinen Verkaufsbedingungen der Micro-Epsilon, die unter Impressum | Micro-Epsilon https://www.micro-epsilon.de/impressum/ abgerufen werden können.

12. Service, Reparatur

Bei einem Defekt am Sensor, Controller oder des Sensorkabels:

- Speichern Sie nach Möglichkeit die aktuellen Sensoreinstellungen in einem Parametersatz, siehe 5.11, um nach der Reparatur die Einstellungen wieder in den Controller laden zu können.
- Senden Sie bitte die betreffenden Teile zur Reparatur oder zum Austausch ein.

Bei Störungen, deren Ursachen nicht eindeutig erkennbar sind, senden Sie bitte immer das gesamte Messsystem an MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de www.micro-epsilon.de

13. Außerbetriebnahme, Entsorgung

Um zu vermeiden, dass umweltschädliche Stoffe freigesetzt werden und um die Wiederverwendung von wertvollen Rohstoffen sicherzustellen, weisen wir Sie auf folgende Regelungen und Pflichten hin:

- Sämtliche Kabel am Sensor und/oder Controller sind zu entfernen.
- Der Sensor und/oder Controller, dessen Komponenten und das Zubehör sowie die Verpackungsmaterialien sind entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des jeweiligen Verwendungsgebietes zu entsorgen.
- Sie sind verpflichtet, alle einschlägigen nationalen Gesetze und Vorgaben zu beachten.

Für Deutschland / die EU gelten insbesondere nachfolgende (Entsorgungs-) Hinweise:

 Altgeräte, die mit einer durchgestrichenen Mülltonne gekennzeichnet sind, dürfen nicht in den normalen Betriebsmüll (z.B. die Restmülltonne oder die gelbe Tonne) und sind getrennt zu entsorgen. Dadurch werden Gefahren für die Umwelt durch falsche Entsorgung vermieden und es wird eine fachgerechte Verwertung der Altgeräte sichergestellt.

- Eine Liste der nationalen Gesetze und Ansprechpartner in den EU-Mitgliedsstaaten finden Sie unter https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en. Hier besteht die Möglichkeit, sich über die jeweiligen nationalen Sammel- und Rücknahmestellen zu informieren.
- Altgeräte können zur Entsorgung auch an Micro-Epsilon an die im Impressum unter https://www.micro-epsilon.de/ impressum/ angegebene Anschrift zurückgeschickt werden.
- Wir weisen darauf hin, dass Sie für das Löschen der messspezifischen und personenbezogenen Daten auf den zu entsorgenden Altgeräten selbst verantwortlich sind.
- Unter der Registrierungsnummer WEEE-Reg.-Nr. DE28605721 sind wir bei der Stiftung Elektro-Altgeräte Register, Nordostpark 72, 90411 Nürnberg, als Hersteller von Elektro- und/ oder Elektronikgeräten registriert.

Anhang

A 1 Optionales Zubehör, Serviceleistungen

A 1.1 Optionales Zubehör

Zubehör IFS2402, IFS2403

CE2402-x	Sensorkabelverlängerung für Sensoren IFS2402, Länge x = 3 m, 10 m, 30 m, 50 m
CE2402-x/PT	Sensor mit Schutzschlauch, Länge $x = 3$ oder 10 m, kundenspezifisch bis 50 m

Zubehör IFS2404

C2404-2	Sensorkabel für Sensoren IFS2404, Länge 2 m

Zubehör IFS2405, IFS2406, IFS2407-0,1

Kabel C2401 mit FC/APC und E2000/APC Stecker

C2401-x	Lichtwellenleiter (3 m, 5 m, 10 m, kundenspezifische Länge bis 50 m)
C2401/PT-x	Lichtwellenleiter mit Schutzschlauch bei mechanischer Beanspruchung (3 m, 5 m, 10 m, kundenspezifische Länge bis zu 50 m)
C2401-x(01)	Lichtwellenleiter Faserkerndurchmesser 26 μ m (3 m, 5 m, 15 m)
C2401-x(10)	Lichtwellenleiter in schleppkettentauglicher Ausführung (3 m, 5 m, 10 m)

Kabel C2400 mit 2x FC/APC Stecker

C2400-x	Lichtwellenleiter (3 m, 5 m, 10 m, kundenspezifische Länge bis 50 m)
C2400/PT-x	Lichtwellenleiter mit Schutzschlauch bei mechanischer Beanspruchung (3 m, 5 m, 10 m, kundenspezifische Länge bis zu 50 m)
C2400/PT-x.Vac	Lichtwellenleiter mit Schutzschlauch in vakuumtauglicher Ausführung (3 m, 5 m, 10 m, kundenspezifische Länge bis zu 50 m)

Montageadapter

MA2400-27	Montageadapter für Sensoren IFS2405-0,3 / IFS2405-1 / IFS2406-3 / IFS2406-10
MA2402-4	Montageadapter für Sensoren IFS2402-x
MA2403-8	Montageadapter für Sensoren IFS2403-x
MA2404-12	Montageadapter für Sensoren IFS2404-x / IFS2407-0,1 / IFS2407-0,8
MA2405-34	Montageadapter für Sensoren IFS2405-3
MA2405-40	Montageadapter für Sensoren IFS2405-6 / IFS2405/90-6
MA2405-54	Montageadapter für Sensoren IFS2405-10 / IFS2407-3
MA2405-62	Montageadapter für Sensoren IFS2405-28/ IFS2405-30
MA2406-20	Montageadapter für Sensoren IFS2406-2,5
MA2407-65	Montageadapter für Sensoren IFS2407-1,5
JMA-xx	Justierbarer Montageadapter, siehe A 3

Zubehör IFS2407/90-0,3

C2407-x

Lichtwellenleiter mit DIN Stecker und E2000/APC (2 m, 5 m)

Zubehör Lichtquelle

IFL2422/LED	Lampenmodul für IFC2422 / IFC2466
IFL24x1/LED	Lampenmodul für IFC24x1
LWL-Reflektor	Reflektor für E2000/APC

Sonstiges Zubehör	
SC2471-x/IF2008	Verbindungskabel IFC2451/61/71-IF2008, Länge 3 m, 10 m oder 20 m lang
SC2471-x/RS422/OE	Schnittstellenkabel für Interface IF2030, Länge 3 m, 10 m
SC2471-3/IF2008ETH	Schnittstellenkabel für Interface IF2008/ETH, Länge 3 m
IF2001/USB	Umsetzer von RS422 auf USB, Typ IF2001/USB, passend für Kabel SC2471-x/RS422/OE, inklusive Treiber, Anschlüsse: 1× Buchsenleiste 10-pol. (Kabelklemme) Typ Würth 691361100010, 1x Buch-
	senleiste 6-pol. (Kabelklemme) Typ Würth 691361100006
IF2004/USB	4-Kanal RS422/USB Konverter für ein bis vier optische Sensoren mit RS422-Schnittstelle Ausgabe der Daten über USB-Schnittstelle. Für den Betrieb ist ein Netzteil 24VDC/2A erfor- derlich (nicht enthalten)
IF2008/PCIE	Interfacekarte IF2008/PCIE für die synchrone Erfassung von 4 digitalen Sensorsignalen Serie confocalDT 2421/2422/2451/2461/2465/2466/2471 und 2 Encoder. In Verbindung mit IF2008E können insgesamt 6 digitale Signale, 2 Encoder, 2 analoge Signale und 8 I/O Signa- le synchron erfasst werden.
IF2008/ETH	8-fach RS422 zu Ethernet-Umsetzer mit industrial M12-Stecker/Buchse zum Anschluss von bis zu 8 Controller IFC2421/2422/2451/2461/2465/2466/2471
IF2030/PNET	Schnittstellenbaustein für Anbindung eines Controllers IFC2421/2422/2451/2461/2465/2466 /2471 auf Profinet, Hutschienengehäuse, Software-Einbindung in die SPS mit GSDML Datei, zertifiziert nach PNIO V2.33
PS2020	Netzteil für Hutschienenmontage, Eingang 230 VAC, Ausgang 24 VDC/2,5 A
EC2471-3/OE	Encoder-Kabel, 3 m

Vakuumdurchführung

C2402/Vac/KF16	Vakuumdurchführung für Lichtwellenleiter, 1 Kanal, Vakuum-Seite FC/APC, Nicht-Vakuum-Seite E2000/APC, Klemmflansch Typ KF 16
C2405/Vac/1/KF16	Vakuumdurchführung beidseitig FC/APC Buchse, 1 Kanal, Klemmflansch Typ KF 16
C2405/Vac/1/CF16	Vakuumdurchführung beidseitig FC/APC Buchse, 1 Kanal, Flansch Typ CF 16
C2405/Vac/6/CF63	Vakuumdurchführung für Lichtwellenleiter, beidseitig FC/APC Buchse, 6 Kanäle, Flansch Typ CF 63

A 1.2 Serviceleistungen

- Linearitätsprüfung und Justage Messsystem confocalDT
- Kalibrierung Messsystem confocalDT

A 2 Werkseinstellungen

Benutzergruppe:	Experte, Passwort "000"
Anzahl Peaks:	1 Messwert, höchster Peak
Peaktrennung:	2 %
RS422:	115.200 KBaud
Triggermodus:	kein Trigger
Sprache:	de
Synchronisation:	keine Synchronisation
Tastenfunktion 1:	Dunkelabgleich
Messrate:	1 kHz
Tastensperre:	inaktiv

Messprogramm:	Abstandsmessung
Peakmodulation:	50 %
Fehlerbehandlung:	Fehlerausgabe, kein Messwert
Ethernet:	Statische IP, IP-Adresse 169.254.168.150
Schaltausgang 1:	Intensitätsfehler Kanal 1
Schaltausgang 2:	Fehler Messbereich Kanal 1
Belichtungsmodus:	Messmodus
Tastenfunktion 2:	inaktiv
IP-Adresse:	169.254.168.150
Datenausgabe:	Webinterface und Analogausgang
	mit 4 20 mA

A 3 Justierbarer Montageadapter JMA-xx

A 3.1 Funktionen

- Unterstützt die optimale Sensorausrichtung für bestmögliche Messergebnisse
- Manueller Verstellmechanismus zur einfachen und schnellen Justage
 - Verschiebung in X/Y: ±2 mm
 - Verkippung: ±4°
- Hohe Schock und Vibrationsbeständigkeit durch Radialklemmung erlaubt Maschinenintegration
- Kompatibel mit zahlreichen Sensormodellen vom Typ confocalDT und interferoMETER

A 3.2 Sensorbefestigung, Kompatibilität

Radialklemmung für S	ensoren mit		
ø 8 mm	ø 12 mm	ø 20 mm	ø 27 mm
Reduzierhülse			
Adapter D27-D8	Adapter D27-D12	Adapter D27-D20	
confocalDT: Serie IFS2403	confocalDT: IFS2404-2 IFS2407-0,1 IFS2407-0,8	confocalDT: IFS2406-2,5/VAC	confocalDT: IFS2405-0,3 IFS2405-1 IFS2406-3 IFS2406-10

A 3.3 Montage

- Montieren Sie den Sensor im Montagering, siehe Abbildung.
- Verwenden Sie Reduzierhülsen für Sensoren mit einem Außen-ø kleiner 27 mm.
- Montieren Sie den Montageadapter mit Schrauben vom Typ M4 in Ihrer Anwendung, siehe Maßzeichnung.

A 3.4 Maßzeichnung Montageadapter

A 3.5 Orthogonale Ausrichtung des Sensors

Justieren Sie bei eingeschalteter Lichtquelle den Sensor auf das Messobjekt.

Horizontale Verschiebung, ±2 mm

Verschiebung nach links:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach rechts:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Horizontale Verkippung, ±4°

Verkippung nach links:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verkippung nach rechts:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Vertikale Verschiebung, ±2 mm

Verschiebung nach unten:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach oben:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Vertikale Verkippung, ±4°

Verschiebung nach unten:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach oben:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

A4 **Reinigen optischer Komponenten**

A 4.1 Verschmutzungen

Verschmutzungen an optischen Oberflächen und Komponenten können eine Zunahme des Dunkelwertes verursachen und wirkt sich auf die Empfindlichkeit und die Genauigkeit aus. Um dies zu vermeiden, ist ein Reinigen der optischen Komponenten und Erfassung des Dunkelwertes nötig. Als Dunkelwert bezeichnet man die störenden Reflexionen an Grenzflächen entlang des optischen Signalpfades. An jeder Grenzfläche oder an jedem Materialübergang werden die Lichtwellen zu einem gewissen Anteil am Übergang reflektiert und laufen im Lichtwellenleiter zurück. Das Störsignal überlagert sich mit dem Nutzsignal und bildet eine Art Signalrauschen.

Ist das Störsignal ausreichend hoch und das Nutzsignal relativ schwach, kann das Nutzsignal nicht mehr eindeutig identifiziert werden. Das kann dazu führen, dass der Controller einen Dunkelwertpeak mit dem Messsignal verwechselt. Der errechnete Abstand des Messobjektes stimmt somit nicht mit dem tatsächlichen überein.

Schutzscheibe

Abb. 84 Optische Grenzflächen eines konfokalen Messsystems

Führen Sie einen Dunkelabgleich durch.

Die Durchführung eines Dunkelabgleiches können Sie in der Betriebsanleitung für das System nachlesen, siehe 5.5.

Videosignal vor dem Dunkelabgleich (hoher Dunkelwert, blaue Linie)

Entspricht das Videosignal dem Zustand vor dem Dunkelabgleich, müssen Sie die optischen Grenzflächen innerhalb des Messsystems reinigen. Reinigen Sie die optischen Oberflächen nacheinander, um die verschmutzte Komponente herauszufinden. Die Verbesserung durch die Reinigung können Sie am Dunkelsignal des Videosignals beobachten.

 \rightarrow Fahren Sie mit dem Abschnitt Schutzscheibe Sensor fort.

Prüfen bzw. reinigen Sie die Schutzscheibe am Sensor in regelmäßigen Intervallen abhängig von den Einsatz-1 bedingungen. Reinigen Sie anschließend stets vom Controller ausgehend Richtung Sensor. Reinigen Sie immer beide Komponenten eines zusammengehören Paares, also Stecker und Buchse.

A 4.2 Hilfs- und Reinigungsmittel

One-Click [™] Cleaner	Isopropanol	Q-Tip, reinraumkompatibel	Druckgas, trocken und ölfrei
			DRUCKLUFT
Für Stecker bzwbuchse vom Typ FC oder E2000	Für die Schutzscheibe am Sensor	In Verbindung mit Isopropanol für Schutzscheibe am Sensor	Zum Entfernen loser Partikel

A 4.3 Schutzscheibe Sensor

Lose anhaftende Partikel

Blasen Sie lose Partikel mit trockener, ölfreier Druckluft ab. Festsitzende Partikel

Reinigen Sie die Schutzscheibe mit einem sauberen weichen, fusselfreien Tuch oder Linsenreinigungspapier und reinem Alkohol (Isopropanol).

Für Sensoren mit kleiner Schutzscheibe, z. B. die Reihe IFS2403:

Tränken Sie einen Q-Tip in Isopropanol. Reiben Sie den Q-Tip langsam in einer kreisförmigen Bewegung auf der Schutzscheibe.

Abb. 85 Ausschnitt Schutzscheibe, radial messende Sensoren

Führen Sie einen Dunkelabgleich durch.

Entspricht das Videosignal dem Zustand vor dem Dunkelabgleich, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Controller Sensorkabel fort.

A 4.4 Schnittstelle Controller Sensorkabel

- Stecken Sie das Sensorkabel (Lichtwellenleiter) am Controller ab.
- Entfernen Sie die Schutzkappe am One-Click[™] Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Lichtwellenleiteranschluss am Controller, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

Abb. 86 One-Click™ Cleaner zum Reinigen von E2000-Lichtwellenleiterübergängen

- Stecken Sie die Schutzkappe am Controller in den Lichtwellenleiteranschluss.
- Entfernen Sie die vordere Schutzkappe am One-Click[™] Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Lichtwellenleiter, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click™ Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

100

- Stecken Sie das Sensorkabel am Controller an.
- Führen Sie einen Dunkelabgleich durch.

Entspricht das Videosignal dem Zustand vor dem Dunkelabgleich, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Sensorkabel Sensor fort.

A 4.5 Schnittstelle Sensorkabel Sensor

- Entfernen Sie das Sensorkabel (Lichtwellenleiter) am Sensor.
- Entfernen Sie die vordere Schutzkappe am One-Click™ Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Lichtwellenleiter, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

Stecken Sie eine Schutzkappe auf den Lichtwellenleiter.

Sensoren mit Lichtwellenleiter im Sensor, z. B. Reihe IFS2407:

- Entfernen Sie die Schutzkappe am One-Click™ Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Sensor, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Sensor bis ein Klickgeräusch das Ende der Reinigung anzeigt.

- Setzen Sie Sensorkabel und Sensor zusammen.
- Führen Sie einen Dunkelabgleich durch.

Entspricht das Videosignal dem Zustand vor dem Dunkelabgleich, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Controller Sensorkabel fort.

A 4.6 Vorbeugende Schutzmaßnahme

Sensoren und Controller eines konfokal-chromatischen Sensorsystems werden mit Schutzkappen ausgeliefert. Dies verhindert eine Ablagerung von Staub oder ähnlichen Verschmutzungen an der optischen Grenzflächen.

Verschließen Sie die Lichtwellenleiteranschlüsse konsequent und umgehend, wenn Sie Sensoren wechseln oder ein Sensorkabel am Controller abstecken.

A 5 ASCII-Kommunikation mit Controller

A 5.1 Allgemein

Die ASCII-Befehle können über die Schnittstellen RS422 oder Ethernet (Port 23) an den Controller gesendet werden. Alle Befehle, Eingaben und Fehlermeldungen erfolgen in Englisch. Ein Befehl besteht immer aus dem Befehlsnamen und Null oder mehreren Parametern, die durch Leerzeichen getrennt sind und mit LF abgeschlossen werden. Wenn Leerzeichen in Parametern verwendet werden, so ist der Parameter in Anführungszeichen zu setzen, z. B. "Passwort mit Leerzeichen".

Beispiel: Ausgabe über RS422 einschalten

OUTPUT RS422 🖵

Hinweis: 🚽	muss LF beinhalt	en, kann aber aud	h CR LF sein.
------------	------------------	-------------------	---------------

Erklärung: LF Zeilenvorschub (line feed, hex 0A)

- CR Wagenrücklauf (carriage return, hex 0D)
- Lenter (je nach System hex 0A oder hex 0D0A)

Der aktuell eingestellte Parameterwert wird zurückgegeben, wenn ein Befehl ohne Parameter aufgerufen wird.

Das Ausgabe-Format ist:

<Befehlsname> <Parameter1> [<Parameter2> [...]]

Die Antwort kann ohne Änderungen wieder als Befehl für das Setzen des Parameters verwendet werden. Optionale Parameter werden nur dann mit zurückgegeben, wenn die Rückgabe nötig ist.

Nach der Verarbeitung eines Befehls wird immer ein Zeilenumbruch und ein Prompt ("->") zurückgegeben. Im Fehlerfall steht vor dem Prompt eine Fehlermeldung, die mit "Exx" beginnt, wobei xx für eine eindeutige Fehlernummer steht. Außerdem können anstatt von Fehlermeldungen auch Warnmeldungen ("Wxx") ausgegeben werden. Diese sind analog zu den Fehlermeldungen aufgebaut, z.B. "Wenn Xenonlampe zu heiß, …". Bei Warnmeldungen wurde der Befehl trotzdem ausgeführt.

A 5.2 Übersicht Befehle

Gruppe	Kapitel	Befehl	Kurzinfo	
Allgeme	Allgemein			
	Kap. A 5.3.1.1	HELP	Hilfe	
	Kap. A 5.3.3.2	GETINFO	Controllerinformation	
	Kap. A 5.3.1.3	ECHO	Antworttyp	
	Kap. A 5.3.1.4	PRINT	Parameterübersicht	
	Kap. A 5.3.1.5	SYNC	Synchronisation	
	Kap. A 5.3.1.6	TERMINATION	Terminierungswiderstand	
	Kap. A 5.3.1.7	RESET	Sensor booten	
	Kap. A 5.3.1.8	RESETCNT	Zähler rücksetzen	
Webinte	rface			
	Kap. A 5.3.2.1	LANGUAGE	Sprache Webinterface	
	Kap. A 5.3.2.2	UNIT	Einheit Webinterface	
Benutzerebene				
	Kap. A 5.3.3.1	LOGIN	Wechsel der Benutzerebene	
	Kan A 5 3 3 2		Wechsel in die Benutzerebene	
	Nup. A 0.0.0.2	LOGOUT	user	
	Kap. A 5.3.3.3	GETUSERLEVEL	Abfrage der Benutzerebene	
	Kap. A 5.3.3.4	STDUSER	Einstellen des Standardnutzers	
	Kap. A 5.3.3.5	PASSWD	Kennwort ändern	

Sensor			
	Kap. A 5.3.4.1	SENSORTABLE	Anzeige verfügbarer Sensoren
	Kap. A 5.3.4.2	SENSORHEAD	Auswahl des Sensors
	Kap. A 5.3.4.3	SENSORINFO	Informationen zum Sensor
	Kap. A 5.3.4.4	DARKCORR	Starten des Dunkelabgleichs
	Kap. A 5.3.4.5	DARKCORRTHRES	Warnschwelle bei Verschmut-
	Kap, A 5.3.4.6	LED	LED-Zustand an / aus
Triggeru	na		
	Kap A 5 3 5 1	TRIGGERSOURCE	Triggerquelle
	Kap A 5 3 5 2	TRIGGERAT	Wirkung des Triggereingangs
	Kap A 5 3 5 3	TRIGGERMODE	Triggerart
	Kap A 5 3 5 4	TRIGGERI EVEL	
	Nup. A 0.0.0.4		Frzeugen eines Softwaretrigger-
	Kap. A 5.3.5.5	TRIGGERSW	signals
	Kap. A 5.3.5.6	TRIGGERCOUNT	Anzahl auszugebenden Mess- werte
	Kap. A 5.3.5.7	TRIGINLEVEL	Pegel für den Trgiln (TTL / HTL)
	Kap. A 5.3.5.8	TRIGGERENCSTEPSIZE	Schrittweite Encodertriggerung
	Kap. A 5.3.5.9	TRIGGERENCMIN	Minimum Encodertriggerung
	Kap. A 5.3.5.10	TRIGGERENCMAX	Maximum Encodertriggerung
Encode			
	Kap. A 5.3.6.1	ENCINTERPOLn	Einstellung Interpolationstiefe
	Kap. A 5.3.6.2	ENCREFn	Einstellung Referenzspur
	Kap. A 5.3.6.3	ENCVALUEn	Einstellung Encoderwertes
	Kap. A 5.3.6.4	ENCSET	Encoderwert setzen
	Kap. A 5.3.6.5	ENCRESET	Reset des Encoderwert
	Kap. A 5.3.6.6	ENCMAXn	Setzen des maximalen Encoder- wertes
Schnitts	tellen	J	
	Kap. A 5.3.7.1	IPCONFIG	Etherneteinstellungen
	Kap. A 5.3.7.2	MEASTRANSFER	Einstellung des Messwertservers
	Kap. A 5.3.7.3	MEASCNT ETH	Anzahl Messwerte pro Paket
	Kap. A 5.3.7.4	BAUDRATE	Einstellung RS422
	Kap. A 5.3.7.5	ETHERMODE	Wechsel Ethernet - EtherCAT
Paramet	erverwaltung. Eir	nstellungen laden / Speicl	hern
	Kap, A 5.3.8.1	BASICSETTINGS	Verbindungseinstellungen laden
	Kap. A 5.3.8.2	CHANGESETTINGS	Geänderte Parameter anzeigen
	Kap. A 5.3.8.3	EXPORT	Parametersätze exportieren
	Kap. A 5.3.8.4	IMPORT	Parametersätze importieren
	Kap. A 5.3.8.5	SETDEFAULT	Werkseinstellungen setzen
	Kap. A 5.3.8.6	MEASSETTINGS	Messeinstellungen bearbeiten
Messung			
	Kap. A 5.3.9.1	PEAKCOUNT	Anzahl Messpeaks
	Kap. A 5.3.9.2	MEASPEAK	Peakauswahl
	Kap, A 5.3.9.3	REFRACCORR	Brechzahlkorrektur
	Kap. A 5.3.9.4	SHUTTERMODE	Belichtungsmode
	Kap, A 5 3 9 5	MEASRATE	Messfrequenz
	Kap A 5396	SHUTTER	Belichtungszeit
	Kap, A 5.3.9.7	ROI	Maskierung des Auswertebe-
			reichs
	Kap. A 5.3.9.8	MIN_THRESHOLD	Mindestschwelle Peakerkennung
	Kap. A 5.3.9.9	PEAK MODULATION	Modulation der Peaks

Materialdatenbank		
Kap. A 5.3.10.1	MATERIALTABLE	Materialtabelle
Kap. A 5.3.10.2	MATERIAL	Material auswählen
Kap. A 5.3.10.3	MATERIALINFO	Materialeigenschaft anzeigen
Kap. A 5.3.10.4	MATERIALEDIT	Materialtabelle editieren
Kap, A 5.3.10.5	MATERIALDELETE	Material löschen
Kap, A 5.3.10.6	MATERIALMP	Materialeinstellungen
Messwertbearbeitung		
Kap A 5 3 11 1	SPIKECOBB	Ausreißerkorrektur
Kap. A 5.3.11.2	STATISTIC	Auswahl des Signals für die Statistik
Kap. A 5.3.11.3	META STATISTIC	Liste möglicher Statistiksignale
Kap. A 5.3.11.4	RESETSTATISTIC	Rücksetzen der Statistikberech-
Kap. A 5.3.11.5	STATISTICSIGNAL	Auswahl Statistiksignal
Kap. A 5.3.11.6	META_STATISTICSIG- NAL	Liste möglich auszuwählender Statistiksignale
Kap. A 5.3.11.7	META_MASTERSIGNAL	Liste der möglich zu parametri- sierenden Signale
Kap. A 5.3.11.8	MASTERSIGNAL	Parametrisieren der Mastersig- nale
Kap. A 5.3.11.9	META_MASTER	Liste möglicher Signale für das Mastern
Kap. A 5.3.11.10	MASTER	Mastern auslösen
Kap. A 5.3.11.11	COMP	Berechnung im Kanal
Kap. A 5.3.11.12	META_COMP	Liste möglicher Berechnungssi- gnalen
Kap. A 5.3.11.13	SYSSIGNALRANGE	Zweipunktskalierung Datenaus- gänge
Datenausgabe		
Kap. A 5.3.12.1	OUTPUT	Auswahl Digitalausgang
Kap. A 5.3.12.2	OUTREDUCEDEVICE	Ausgabe-Datenrate
Kap. A 5.3.12.3	OUTREDUCECOUNT	Reduzierungszähler
Kap. A 5.3.12.4	OUTHOLD	Fehlerbehandlung
Auswahl der auszugeben	den Messwerte über die	Schnittstellen
Kap. A 5.3.13.2	OUT_ETH	Datenauswahl für Ethernet
Kap. A 5.3.13.3	META_OUT_ETH	Liste möglicher Signale Ethernet
Kap. A 5.3.13.4	GETOUTINFO_ETH	Liste ausgewählter Signale, Rei- henfolge über Ethernet
Kap. A 5.3.13.5	OUT_RS422	Datenauswahl für RS422
Kap. A 5.3.13.6	META_OUT_RS422	Liste möglicher Signale RS422
Kap. A 5.3.13.7	GETOUTINFO_RS422	Liste ausgewählter Signale, Rei- henfolge über RS422
Schaltausgänge		
Kap. A 5.3.14.1	ERROROUTn	Auswahl Fehlersignal zur Aus- gabe
Kap. A 5.3.14.2	ERRORLIMITSIGNALn	Setzen des auszuwertenden Signales
Kap. A 5.3.14.3	META_ERRORLIMITSI- GNAL	Liste der möglichen Signale für den Errorausgang
Kap. A 5.3.14.4	ERRORLIMITCOMPARE- TOn	Setzen der Grenzwerte
Kap. A 5.3.14.5	ERRORLIMITVALUESn	Setzen des Wertes
Kap A 5 3 1/ 6	ERRORLEVELOUTn	Schaltverhalten Schaltausgänge

Analogausgang			
Kap. A 5.3.15.1	ANALOGOUT	Datenauswahl für den Analog- ausgang	
Kap. A 5.3.15.2	META_ANALOGOUT	Liste möglicher Signale Analog- ausgang	
Kap. A 5.3.15.3	ANALOGRANGE	Setzen Strom-/Spannungsbe- reichs des Digital-Analog-Wand- lers (DAC)	
Kap. A 5.3.15.4	ANALOGSCALEMODE	Einstellung der Skalierung des DAC	
Kap. A 5.3.15.5	ANALOGSCALERANGE	Einstellung des Skalierungsbe- reiches	
Tastenfunktionen			
Kap. A 5.3.16.1	KEYFUNC	Aktivierung der Mehrfunktions- taste	
Kap. A 5.3.16.3	KEYLOCK	Auswahl der Tastensperre	

A 5.3 Allgemeine Befehle

A 5.3.1 Allgemein

A 5.3.1.1 Hilfe

HELP [<Befehl>]

Ausgabe einer Hilfe zu jedem Befehl. Wird kein Befehl angegeben, wird eine allgemeine Hilfe ausgegeben.

A 5.3.1.2 Controllerinformation

GETINFO

Abfragen der Sensor-Information. Ausgabe siehe untenstehendes Beispiel:

```
->GETINFO
Name: IFC2422
Serial: 12345678
Option: 000
Article: 1234567
MAC-Address: 00-0C-12-01-30-01
Version: 001.035.056
Hardware-rev: 02
Boot-version 001.018
BuildID 400
->
```

Name: Modelname des Controllers / der Controllerreihe

Serial: Seriennummer des Controllers

Option: Optionsnummer des Controllers

Article: Artikelnummer des Controllers

MAC-Address: Adresse des Netzwerkadapters

Version: Version der gebooteten Software

Hardware-rev: Verwendete Hardwarerevision

Boot-version: Version des Bootloaders

BuildID: Identifikationsnummer für die erzeugte Software

A 5.3.1.3 Antworttyp

ECHO ON | OFF

Der Antworttyp beschreibt den Aufbau einer Befehlsantwort.

ECHO ON: Es wird der Befehlsname und die Befehlsantwort oder eine Fehlermeldung ausgegeben.

ECHO OFF: Es wird nur die Befehlsantwort oder eine Fehlermeldung zurückgegeben.

A 5.3.1.4 Parameterübersicht

PRINT ALL

ohne Parameter: Dieser Befehl gibt eine Liste aller Einstellparameter und deren Wert aus.

- ALL : Dieser Befehl gibt eine Liste aller Einstellparameter und deren Wert, als auch Informationen wie z. B. Sensortabelle oder GETINFO, aus

A 5.3.1.5 Synchronisation

SYNC NONE | MASTER | SLAVE SYNTRIG | SLAVE TRIGIN

Einstellen der Synchronisationsart:

- NONE: Keine Synchronisation
- MASTER: Controller ist Master, d. h. er gibt Synchronisationsimpulse am Ausgang Sync/Trig aus
- SLAVE_SYNTRIG: Controller ist Slave und erwartet Synchron-Impulse von z. B. einem anderen IFC2421/2422/2465/2466 oder einer ähnlichen Impulsquelle am Eingang Sync/Trig.
- SLAVE_TRIGIN: Controller ist Slave und erwartet Synchron-Impulse von einem Frequenzgenerator am Eingang TrigIn.

Eingang	Verhalten
Sync/Trig	Differenziell
TrigIn	TTL / HTL

Sync/Trig ist alternativ ein Ein- oder ein Ausgang, d. h. es ist darauf zu achten, dass immer einer der Controller auf Master und der andere auf Slave geschaltet ist.

Außerdem dient der Eingang TrigIn ebenfalls als Triggereingang für die Triggerarten Flanken- und Pegeltriggerung.

A 5.3.1.6 Terminierungswiderstand an Sync/Trig

TERMINATION OFF | ON

Der Terminierungswiderstand 120 Ohm am Synchroneingang Sync/Trig wird aus- oder eingeschaltet.

A 5.3.1.7 Sensor booten

RESET

Der Controller wird neu gestartet.

A 5.3.1.8 Zähler zurücksetzen

RESETCNT [TIMESTAMP] [MEASCNT]

Der Zähler wird nach Eintreffen der gewählten Triggerflanke zurückgesetzt.

- TIMESTAMP: setzt den Zeitstempel zurück
- MEASCNT: setzt den Messwertzähler zurück

A 5.3.2 Webinterface

A 5.3.2.1 Sprache der Webseite

LANGUAGE DE | EN

Sprache für Webseite auswählen.

- DE: Sprache auf Deutsch setzen
- EN: Sprache auf Englisch setzen

Die gewählte Spracheinstellung wird auf der Webseite wirksam.

A 5.3.2.2 Maßeinheit der Webseite

UNIT MM | INCH

Wechsel der Messwertdarstellung auf den Webseiten.

Der Befehl hat keinen Einfluss auf das ASCII-Interface, d. h. die Einheit der Befehle ist nicht betroffen.

- MM: Darstellung in mm (default)
- INCH: Darstellung in Zoll
A 5.3.3 Benutzerebene

A 5.3.3.1 Wechsel der Benutzerebene

LOGIN <Passwort>

Eingabe des Passwortes, um in eine andere Benutzerebene zu gelangen. Es gibt folgende Benutzerebenen:

- USER: Lesenden Zugriff auf alle Elemente + Benutzung der Web-Diagramme
- PROFESSIONAL: Lesenden/Schreibenden Zugriff auf alle Elemente

A 5.3.3.2 Wechsel in die Benutzerebene

LOGOUT

Setzen der Benutzerebene auf USER.

A 5.3.3.3 Abfrage der Benutzerebene

GETUSERLEVEL

Abfragen der aktuellen Benutzerebene.

Mögliche Ausgaben, siehe A 5.3.3.1, "Wechsel der Benutzerebene".

A 5.3.3.4 Einstellen des Standardnutzers

STDUSER USER | PROFESSIONAL

Einstellen des Standardbenutzers, der nach dem Systemstart angemeldet ist.

A 5.3.3.5 Kennwort ändern

PASSWD <Altes Passwort> <Neues Passwort> <Neues Passwort>

Ändern des Passwortes für den Benutzer PROFESSIONAL. Das werkseitige Standardpasswort ist "000".

Es muss dafür das alte und zweimal das neue Passwort angegeben werden. Stimmen die neuen Passworte nicht überein, wird eine Fehlermeldung ausgegeben. Die Passwortfunktion unterscheidet Groß/Kleinschreibung. Ein Passwort darf nur die Buchstaben A bis Z und Zahlen ohne Umlaute/Sonderzeichen enthalten. Die maximale Länge ist auf 31 Zeichen beschränkt.

A 5.3.4 Sensor

A 5.3.4.1 Info zu Kalibriertabellen

SENSORTABLE

->SEI	NSORTABLE		
Pos,	Sensor name,	Range,	Serial
Ο,	ifs-2405x,	3.000mm,	12345678
8,	ifs-2405x,	10.000mm,	12345678
9,	ifs-2405x,	3.000mm,	12345678
->			

Ausgabe aller verfügbaren (angelernten) Sensoren.

A 5.3.4.2 Sensornummer

IFC2421 / IFC2465	IFC2422 / IFC2466		
SENSORHEAD <sensor-position></sensor-position>	SENSORHEAD_CH01 <sensor-position></sensor-position>		
	SENSORHEAD_CH02 <sensor-position></sensor-position>		

Auswahl des aktuellen Sensors anhand dessen Position in der Sensortabelle, siehe A 5.3.4.1.

Minimal 0 und maximal 19.

A 5.3.4.3 Sensorinformationen

IFC2421 / IFC2465	IFC2422 / IFC2466
SENSORINFO	SENSORINFO_CH01
	SENSORINFO_CH02

Ausgabe der Informationen des Sensor (Name, Messbereich und Seriennummer).

->SENSORINFO	
Position:	0
Name:	ifs-2405x
Measurement range:	3.000 mm
Serial:	12345678
->	

A 5.3.4.4 Dunkelabgleich

IFC2421 / IFC2465	IFC2422 / IFC2466
DARKCORR	DARKCORR_CH01
	DARKCORR_CH02

Durchführung des Dunkelabgleichs für den mit SENSORHEAD ausgewählten Sensor. Der Dunkelabgleich ist abhängig vom Sensor und wird für jeden einzelnen Sensor pro Kanal im Controller gespeichert.

A 5.3.4.5 Warnschwelle bei Verschmutzung

DARKCORRTHRES <Schwelle>

Schwelle: prozentuale Abweichung der Intensität/Belichtungszeit vom gespeicherten Wert, bei deren Überschreitung eine Warnmeldung ausgegeben wird. Werkseinstellung: 50 %.

Die Warnschwelle wird in % mit einer Nachkommastelle angegeben.

A 5.3.4.6 LED

IFC2421 / IFC2465	IFC2422 / IFC2466
LED OFF ON	LED_CH01 ON OFF
	LED CH02 ON OFF

Schaltet die LED des jeweiligen Kanales an bzw. aus.

A 5.3.5 Triggerung

A 5.3.5.1 Triggerquelle auswählen

TRIGGERSOURCE NONE | SYNCTRIG | TRIGIN | SOFTWARE | ENCODER1 | ENCODER2

- NONE: Keine Triggerquelle verwenden
- SYNCTRIG: Verwende den Eingang Sync/Trig
- TRIGIN: Verwende den Eingang TrigIn
- SOFTWARE: Triggerung wird durch das Kommando TRIGGERSW ausgelöst.
- ENCODER1: Encoder-Triggerung von Encoder 1
- ENCODER2: Encoder-Triggerung von Encoder 2

A 5.3.5.2 Ausgabe von getriggerten Werten, mit/ohne Mittelung

TRIGGERAT INPUT | OUTPUT

- INPUT: Triggerung der Messwertaufnahme. In die Mittelwertberechnung gehen unmittelbar vor dem Triggerereignis gemessene Werte nicht ein, stattdessen aber ältere Messwerte, die bei vorhergehenden Triggerereignissen ausgegeben wurden.
- OUTPUT: Triggerung der Messwertausgabe. In die Mittelwertberechnung gehen unmittelbar vor dem Triggerereignis gemessene Werte ein.

Als Werkseinstellung ist die Triggerung der Messwertaufnahme aktiviert.

A 5.3.5.3 Triggerart

TRIGGERMODE EDGE | PULSE

Auswahl der Triggerart.

- PULSE: Pegeltriggerung
- EDGE: Flankentriggerung

A 5.3.5.4 Aktivpegel des Triggereinganges

TRIGGERLEVEL HIGH | LOW

- HIGH: Flankentriggerung: Steigende Flanke, Pegeltriggerung: High-Aktiv
- LOW: Flankentriggerung: Fallende Flanke, Pegeltriggerung: Low-Aktiv

A 5.3.5.5 Software-Triggerimpuls

TRIGGERSW

Erzeugt einen Software-Triggerimpuls, wenn die Triggerquelle auf Software eingestellt ist.

A 5.3.5.6 Anzahl der auszugebenden Messwerte

TRIGGERCOUNT NONE | INFINITE | <n>

- NONE: Stopp der Triggerung
- <n>: Anzahl der auszugebenden Messwerte nach einem Triggerimpuls (bei Flankentriggerung oder Softwaretriggerung)
- Infinite: Start einer unendlichen Messwertausgabe nach einem Triggerimpuls (bei Flankentriggerung oder Softwaretriggerung)

A 5.3.5.7 Pegelauswahl Triggereingang TrigIn

TRIGINLEVEL TTL | HTL

Die Pegelauswahl gilt nur für den Eingang TrigIn. Der Eingang Sync/Trig erwartet ein differenzielles Signal.

- TTL: Eingang erwartet TTL-Signal.
- HTL: Eingang erwartet HTL-Signal.

A 5.3.5.8 Schrittweite Encodertriggerung

TRIGGERENCSTEPSIZE [value of step size]

Setzt die Anzahl der Encoderschritte, nach denen je ein Messwert ausgegeben wird (min: 0, max: 2³¹-1). Bei 0 werden zwischen Min und Max kontinuierlich Messwerte ausgegeben.

A 5.3.5.9 Minimum Encodertriggerung

TRIGGERENCMIN [minimum value]

Setzt den minimale Encoderwert, ab dem getriggert wird (min: 0 max: 2³²-1).

A 5.3.5.10 Maximum Encodertriggerung

TRIGGERENCMAX [maximum value]

Setzt den maximalen Encoderwert, bis zu dem getriggert wird (min: 0 max: 2³²-1).

A 5.3.6 Encoder

A 5.3.6.1 Encoder-Interpolationstiefe

ENCINTERPOL1 1 | 2 | 4

ENCINTERPOL2 1 | 2 | 4

Setzen der Interpolationstiefe des jeweiligen Encoder-Eingangs.

A 5.3.6.2 Wirkung der Referenzspur

ENCREF1 NONE | ONE | EVER ENCREF2 NONE | ONE | EVER

Einstellung der Wirkung der Encoder-Referenzspur.

- NONE: Referenzmarke des Encoders hat keine Wirkung.
- ONE: Einmaliges Setzen (beim ersten Erreichen der Referenzmarke wird der Encoderwert, siehe A 5.3.6.3, übernommen).
- EVER: Setzen bei allen Marken (bei jedem Erreichen der Referenzmarke wird der Encoderwert, siehe A 5.3.6.3, übernommen).

A 5.3.6.3 Encoderwert

ENCVALUE1 <Encoderwert> ENCVALUE2 <Encoderwert>

Gibt an, auf welchen Wert der entsprechende Encoder bei Erreichen einer Referenzmarke (oder per Software) gesetzt werden soll.

Der Encoderwert kann zwischen 0 und 2³²-1 liegen.

Mit dem Setzen des ENCVALUE wird automatisch der Algorithmus zum Erkennen der ersten Referenzmarke zurückgesetzt, siehe A 5.3.6.2.

A 5.3.6.4 Encoderwert per Software setzen

ENCSET 1 | 2

Setzen des Encoderwertes, siehe A 5.3.6.3, im angegebenen Encoder per Software (nur bei ENCREF NONE möglich, ansonsten kehrt der Befehl sofort ohne Fehlermeldung zurück).

A 5.3.6.5 Rücksetzen der Erkennung der ersten Referenzmarke

ENCRESET 1 | 2

Rücksetzen der Erkennung der ersten Referenzmarke, siehe A 5.3.6.2 (nur bei ENCREF ONE möglich, ansonsten kehrt der Befehl sofort ohne Fehlermeldung zurück).

A 5.3.6.6 Maximaler Encoderwert

```
ENCMAX1 <Encoderwert>
```

ENCMAX2 <Encoderwert>

Gibt den maximalen Wert des Encoders an, nach welchem der Encoder wieder auf 0 springt. Kann z.B. für Dreh-Encoder ohne Referenzspur verwendet werden.

Der Encoderwert kann zwischen 0 und 2³²-1 liegen.

A 5.3.7 Schnittstellen

A 5.3.7.1 Ethernet IP-Einstellungen

IPCONFIG DHCP | STATIC [<IPAddress> [<Netmask> [<Gateway>]]]

Einstellen der Ethernet-Schnittstelle.

DHCP: IP-Adresse und Gateway wird automatisch per DHCP abgefragt. Steht kein DHCP-Server zur Verfügung wird nach ca. 2 Minuten eine LinkLocal Adresse gesucht.

STATIC: Setzen einer IP-Adresse, der Netzmaske und des Gateways im Format xxx.xxx. xxx.xxx

Werden IP-Adresse, Netzmaske und/oder Gateway nicht mit angegeben, bleiben deren Werte unverändert.

A 5.3.7.2 Einstellung zur Ethernet-Messwertübertragung

MEASTRANSFER NONE | SERVER/TCP [<PORT>]|(CLIENT/TCP | CLIENT/UDP
[<IPAdresse> [<Port>]])

Zur Messwertausgabe über Ethernet kann der IFC24xx als Server sowie Client betrieben werden.

- NONE: Es folgt keine Messwertübertragung über Ethernet.
- SERVER/TCP: Der Controller stellt an dem angegebenen Port einen Server bereit, über welchen Messwerte angerufen werden können. Dies ist nur per TCP/IP möglich.
- CLIENT/TCP: Der Controller schickt verbindungsorientiert über TCP/IP Messwerte an den angegebenen Server. Die Angabe von IP-Adresse und Port des Servers sind erforderlich, siehe A 5.3.12.1.
- CLIENT/UDP: Der Controller schickt verbindungslos über UDP/IPMesswerte an den angegebenen Server. Dazu werden die IP-Adresse und der Port des Server angegeben.
- IPAdresse: IP-Adresse des Servers, an den die Messwerte im Client-Betrieb gesendet werden (darf nur bei CLIENT/TCP oder CLIENT/UDP angegeben werden).
- Port: Port, an welchem im Server-Betrieb der Server erstellt wird oder an den im Client-Betrieb die Messwerte gesendet werden (min: 1024, max: 65535).
- Kommandos werden am Port 23 erwartet, der Datenport ist ab Werk auf 1024 eingestellt.

A 5.3.7.3 Anzahl Messwerte pro Ethernet-Paket

MEASCNT ETH 0 | <count>

Setzt die maximale Anzahl an Messwerten für ein Paket.

- 0: Automatische Zuweisung der Messwertanzahl
- count: Manuelle Zuweisung der Messwertanzahl, Bereich von 0 ... 350

A 5.3.7.4 Einstellung der RS422-Baudrate

BAUDRATE <Baudrate>

Einstellbare Baudraten in Bps für die RS422-Schnittstelle:

9600, 115200, 230400, 460800, 691200, 921600, 2000000, 3000000, 4000000

A 5.3.7.5 Umschaltung Ethernet / EtherCAT

ETHERMODE ETHERNET | ETHERCAT

Auswahl, ob der Controller im Ethernet- oder EtherCAT-Modus startet. Die Einstellung wird erst nach Speichern und Neustart des Controllers aktiv.

A 5.3.8 Parameterverwaltung, Einstellungen laden / Speichern

A 5.3.8.1 Verbindungseinstellungen laden / speichern

BASICSETTINGS READ | STORE

- READ: Liest die Verbindungseinstellungen aus dem Controller-Flash.
- STORE: Speichert die aktuellen Verbindungseinstellungen aus dem Controller-RAM in den Controller-Flash.

A 5.3.8.2 Geänderte Parameter anzeigen

CHANGESETTINGS

Gibt alle geänderten Einstellungen aus.

A 5.3.8.3 Export von Parametersätzen in PC

```
EXPORT (MEASSETTINGS <SetupName>) | BASICSETTINGS |
MEASSETTINGS ALL | MATERIALTABLE | ALL
```

Speichern von Parametern in externem Gerät, z. B. PC.

Die Export-Datei ist als lesbare JavaScript Object Notation, kurz JSON, formatiert.

- MEASSETTINGS <SetupName>: Exportieren des angegebenen MeasSettings. Vor dem Import wird nichts gelöscht.
- BASICSETTINGS: Exportieren der aktuell gespeicherten BasicSettings. Vor dem Import werden die BasicSettings gelöscht.
- MEASSETTINGS_ALL: Exportieren aller gespeicherten MeasSettings, incl. des Initial Settings. Vor dem Import werden alle vorhandenen MeasSettings gelöscht.
- MATERIALTABLE: Exportieren der gespeicherten Materialtabelle. Vor dem Import wird die vorhandene Materialtabelle gelöscht.
- ALL: Kompletter Export aller gespeicherten Settings (Basic und Meas), der Materialtabelle sowie aller gespeicherten Sensordaten. Vor dem Import wird alles gelöscht.

A 5.3.8.4 Import von Parametersätzen aus PC

IMPORT [FORCE] [APPLY] <Daten>

Laden von Parametern aus externem Gerät, z. B. PC.

Die Import-Datei ist eine zuvor mit Export gespeicherte JSON-Datei.

- FORCE: Überschreiben von Meassettings mit dem gleichen Namen, ansonsten wird bei gleichen Namen eine Fehlermeldung zurückgegeben. Beim Import aller Meassettings oder der Basicsettings muss immer Force angegeben werden.
- APPLY : Übernehmen der Einstellungen nach dem Importieren und lesen der Initial Settings.

A 5.3.8.5 Werkseinstellungen

SETDEFAULT ALL | MEASSETTINGS | BASICSETTINGS | MATERIAL

Setzen der Defaultwerte (Rücksetzen auf Werkseinstellung), löschen der entsprechenden Settings im Flash.

- ALL: Es werden alle Setups gelöscht und die Default-Parameter geladen. Zusätzlich wird die aktuelle Materialtabelle durch die Standard-Materialtabelle überschrieben.
- MEASSETTINGS: Einstellungen der Messaufgabe.
- BASICSETTINGS: Grundeinstellungen wie z. B. IP, Baudrate, Sprache, Einheit.
- MATERIAL: Nur Überschreiben der aktuellen Materialtabelle durch die Standard-Materialtabelle.

A 5.3.8.6 Messeinstellungen bearbeiten, speichern, anzeigen, löschen

MEASSETTINGS <Unterkommando> [<Name>]

Einstellungen der Messaufgabe. Bewegt applikationsabhängige Messeinstellungen zwischen Controller-RAM und Controller-Flash. Entweder werden die herstellereigenen Presets oder die nutzerdefinierten Einstellungen verwendet. Jedes Preset kann als nutzerdefinierte Einstellung verwendet werden.

Unterkommandos:	
PRESETMODE <mode></mode>	Bestimmt die Preset-Dynamik.
<mode> = NONE STATIC BALANCED DYNAMIC</mode>	Bei NONE ist keine Auswahl für ein Preset vorhanden.
PRESETLIST	Listet alle vorhandenen Presets (Namen): "Name1" "Name2" "…"
READ <name></name>	Lädt ein Basic-Settings oder ein Meassettings / Preset (Name angeben) aus dem Controller-Flash.
STORE <name></name>	Speichert ein Basic-Settings oder ein Meas-Settings in den Controller-Flash. Name angeben oder es wird unter dem aktuellen Namen gespeichert.
DELETE <name></name>	Löscht die benannte Messeinstellung aus dem Controller- Flash.
RENAME <nameold> <namenew> [FORCE]</namenew></nameold>	Ändert den Namen einer Messeinstellung im Controller-Flash. Mit FORCE kann eine vorhandene Messeinstellung über- schrieben werden.
LIST	Listet alle gespeicherten Messeinstellungen (Namen) "Name1" "Name2" "…". Die Reihenfolge ist nach den in- ternen Slot-Nummern, also nicht die Reihenfolge des Spei- cherns.
CURRENT	Ausgabe des aktuellen Meassettings / Presets (Name)
INITIAL AUTO	Lädt beim Start des Controllers die zuletzt gespeicherte Ein- stellung bzw. das erste Preset, wenn keine Setups vorhanden sind.
INITIAL <name></name>	Lädt die benannte Messeinstellung beim Start des Con- trollers. Presets können nicht angegeben werden.

A 5.3.9 Messung

A 5.3.9.1 Peakanzahl

PEAKCOUNT <n>

Gibt die maximale Anzahl an Peaks wieder, die ausgewertet werden sollen.

- Bei Abstandsmessung <n> = 1
- Bei Dickenmessung <n> = 2
- Bei Mehrschichtmessung <n> >2

A 5.3.9.2 Peakauswahl

IFC2421 / IFC2465	IFC2422 / IFC2466	
MEASPEAK F_L L_SL F_S H_SH	MEASPEAK_CH01 F_L L_SL F_S H_SH	
	MEASPEAK_CH02 F_L L_SL F_S H_SH	

Auswahl der verwendeten Peaks für die Messung

Abstandsmessung		Dickenm	nessung
F_L:	erster Peak	F_L:	erster Peak und letzter Peak
L_SL:	letzter Peak	L_SL:	vorletzter und letzter Peak
F_S:	erster Peak	F_S:	erster Peak und zweiter Peak
H_SH:	höchster Peak	H_SH:	höchster und zweithöchster

A 5.3.9.3 Anzahl Peaks und Ein-/Ausschalten der Brechzahlkorrektur

IFC2421 / IFC2465	IFC2422 / IFC2466
REFRACCORR on off	REFRACCORR_CH01 on off
	REFRACCORR_CH02 on off

- On: Die Brechzahlkorrektur wird mit den eingestellten Materialien durchgeführt, Standardeinstellung.
- Off: Es wird die Brechzahl 1.0 für alle Schichten angenommen.

A 5.3.9.4 Belichtungsmode

IFC2421 / IFC2465	IFC2422 / IFC2466
SHUTTERMODE	SHUTTERMODE_CH01
MEAS MANUAL 2TIMEALT 2TIMES	MEAS MANUAL 2TIMEALT 2TIMES
	SHUTTERMODE_CH02
	MEAS MANUAL 2TIMEALT 2TIMES

- MEAS: Automatische Belichtungszeitregelung bei fester Messrate, für Messung empfohlen
- MANUAL: Wählbare Belichtungszeit und Messrate.
- 2TIMEALT: Modus mit 2 manuell eingestellten Belichtungszeiten, die immer abwechselnd angewendet werden, für 2 sehr unterschiedlich hohe Peaks bei der Dickenmessung. Besonders empfohlen, wenn der kleinere Peak verschwindet bzw. der größere übersteuert.
- 2TIMES: Schnellster Modus mit 2 manuell voreingestellten Belichtungszeiten, von denen automatisch die besser geeignete gewählt wird. Empfohlen bei Abstandsmessung für sehr schnell wechselnde Oberflächeneigenschaften, z. B. verspiegeltes / entspiegeltes Glas.

A 5.3.9.5 Messrate

MEASRATE <Messrate>

Eingabe der Messrate in kHz: IFC2421/2422: Wertebereich 0.100 ... 6.500; IFC2465/2466: Wertebereich 0.100 ... 30.000.

Es können maximal drei Nachkommastellen angegeben werden, z. B. 0.100 für 0,1 kHz.

A 5.3.9.6 Belichtungszeit

IFC2421 / IFC2465	IFC2422 / IFC2466
SHUTTER <belichtungszeit1> [<belichtungszeit2>]</belichtungszeit2></belichtungszeit1>	SHUTTER_CH01 <belichtungszeit1> [<belichtungszeit2>]</belichtungszeit2></belichtungszeit1>
	SHUTTER_CH02 <belichtungszeit1> [<belichtungszeit2>]</belichtungszeit2></belichtungszeit1>

Angabe der Belichtungszeiten für den manuellen und die Zwei-Zeiten-Belichtungsmodus.

Die Belichtungszeit wird in μ s angegeben und liegt zwischen 1 μ s ... 10000 μ s (IFC242x) bzw. zwischen 3 μ s ... 10000 μ s (IFC246x).

Die Belichtungszeit wird mit drei Dezimalstellen verarbeitet. Die minimale Schrittweite beträgt 0,1 μ s.

A 5.3.9.7 Maskierung des Auswertebereichs

IFC2421 / IFC2465	IFC2422 / IFC2466
ROI <start> <ende></ende></start>	ROI_CH01 <start> <ende></ende></start>
	ROI CH02 <start> <ende></ende></start>

Setzen des Auswertebereiches für das "Range of interest" des jeweiligen Kanals. Anfang und Ende müssen zwischen 0 und 511 liegen. Die Angabe erfolgt in der Einheit Pixel. Der Startwert muss kleiner als der Endwert sein.

A 5.3.9.8 Mindestschwelle Peakerkennung

IFC2421 / IFC2465	IFC2422 / IFC2466
MIN_THRESHOLD <n></n>	MIN_THRESHOLD_CH01 <n></n>
	MIN THRESHOLD CH02 <n></n>

Setzt die minimale Erkennungsschwelle. Ein Peak muss oberhalb dieser Schwelle sein, damit dieser als Peak erkannt wird.

Die Eingabe erfolgt in % und bezieht sich auf das dunkelkorrigierte Signal.

A 5.3.9.9 Peakmodulation

IFC2421 / IFC2465	IFC2422 / IFC2466
PEAK_MODULATION <n></n>	PEAK_MODULATION_CH01 <n></n>
	PEAK_MODULATION_CH02 <n></n>

Gibt die Höhe der Durchmodulation an, damit ineinander laufende Peaks getrennt werden. Bei 100 % erfolgt keine Peaktrennung und bei 0 % (Werkseinstellung) werden alle Peaks getrennt.

Somit kann man entsprechende Peakartefakte entfernen bzw. werden diese nicht als einzelne Peaks betrachtet.

A 5.3.10 Materialdatenbank

A 5.3.10.1 Materialtabelle

MATERIALTABLE

Ausgabe der im Controller gespeicherten Materialtabelle.

->MA'I'I	SRIALTABLE					
			Refraction index	< c	Abbenumber	
Pos,	Name,	nF at 486nm,	nd at 587nm,	nC at 656nm,	vd	Description
0	Vakuum,	1.000000,	1.000000,	1.000000,	0.00000	Vakuum; Luft(naeherungsweise)
1	Wasser,	1.337121,	1.333044,	1.331152,	0.00000	
1	Ethannol,	1.361400,	1.361400,	1.361400,	0.00000	
7	PC,	1.599439,	1.585470,	1.579864,	0.00000	Polycarbonat
8	Quarzglas,	1.463126,	1.458464,	1.456367,	0.00000	Siliziumdioxid, Fused Silica
9	вк7,	1.522380,	1.516800,	1.514320,	0.00000	Kronglas
->						

A 5.3.10.2 Material auswählen

MATERIAL <Materialname>

IFC2421 / IFC2465	IFC2422 / IFC2466
MATERIAL <materialname></materialname>	MATERIAL_CH01 <materialname></materialname>
	MATERIAL_CH02 <materialname></materialname>

Ändern des Materials zwischen Abstand 1 und 2 für den jeweiligen Kanal.

Es muss der Materialname inkl. Leerzeichen eingegeben werden. Der Befehl unterstützt case sensitive Eingaben, wobei zwischen Groß- und Kleinbuchstaben unterschieden wird. Die maximale Länge des Materialnamens ist 30 Zeichen.

A 5.3.10.3 Materialeigenschaft anzeigen

MATERIALINFO

IFC2421 / IFC2465	IFC2422 / IFC2466
MATERIALINFO [<layer>]</layer>	MATERIALINFO_CH01 [<layer>]</layer>
	MATERIALINFO_CH02 [<layer>]</layer>

Ausgabe der Materialeigenschaften der gewählten Schicht (Layer). Schicht 1 liegt zwischen Abstand 1 und 2, Schicht 2 zwischen Abstand 2 und 3 usw. Ohne Parameter werden die Informationen zu Schicht 1 ausgegeben.

Beispiel:

->MATERIALINFO	
Name:	BK7
Description:	Kronglas
Refraction index nF at 486nm:	1.522380
Refraction index nd at 587nm:	1.516800
Refraction index nC at 656nm:	1.514320
Abbe value vd:	0.00000
->	

A 5.3.10.4 Materialtabelle editieren

MATERIALEDIT <Name> <Beschreibung> (NX <nF> <nd> <nC>) | (ABBE <nd> <Abbezahl>)

Hinzufügen oder editieren eines Materials bei Mehrschichtmessung, siehe A 5.3.10.6.

- Name: Name des Materials (Länge: max. 30 Zeichen)
- Beschreibung: Beschreibung des Materials (Länge: max. 62 Zeichen)
- NX: Material wird durch drei Brechzahlen charakterisiert
- ABBE: Material wird durch eine Brechzahl und die Abbezahl charakterisiert
- nF: Brechzahl nF bei 486 nm (min: 1.0, max: 4.0)
- nd: Brechzahl nd bei 587 nm (min: 1.0, max: 4.0)
- nC: Brechzahl nC bei 656 nm (min: 1.0, max: 4.0)
- Abbezahl: Abbezahl vd (min: 10.0, max: 200.0)

Die Brechzahlen und die Abbezahl werden mit sechs Nachkommastellen verarbeitet.

Wenn der Materialname schon vergeben ist, wird dieses Material editiert. Ansonsten wird ein neues Material angelegt.

Es gibt maximal 20 Materialien.

A 5.3.10.5 Löschen eines Materials

MATERIALDELETE <Name>

Löschen eines Materials.

- Name: Name des Materials (Länge: max. 30 Zeichen)

A 5.3.10.6 Materialeinstellungen Mehrschichtmessung

IFC2421 / IFC2465	IFC2422 / IFC2466
MATERIALMP [<material1></material1>	MATERIALMP_CH01 [<material1></material1>
[<material2>[<material3></material3></material2>	[<material2>[<material3></material3></material2>
[<material4>[<material5>]]]]]</material5></material4>	[<material4>[<material5>]]]]</material5></material4>
	MATERIALMP_CH02 [[<material1> [<material2>[<material3> [<material4>[<material5>]]]]]</material5></material4></material3></material2></material1>

Anzeigen und Setzen der Materialien für die fünf Schichten zwischen den Peaks 1 bis 6.

Bei Eingabe von "" wird das bestehende Material beibehalten.

A 5.3.11 Messwertbearbeitung

A 5.3.11.1 Ausreißerkorrektur

IFC2421 / IFC2465	IFC2422 / IFC2466
SPIKECORR [ON OFF[[<anzahl< td=""><td>SPIKECORR_CH01 [ON OFF[[<anzahl< td=""></anzahl<></td></anzahl<>	SPIKECORR_CH01 [ON OFF[[<anzahl< td=""></anzahl<>
bewerteter Messwerte>][[<to-< td=""><td>bewerteter Messwerte>][[<tole-< td=""></tole-<></td></to-<>	bewerteter Messwerte>][[<tole-< td=""></tole-<>
leranzbereich in mm>][<anzahl< td=""><td>ranzbereich in mm>][<anzahl kor-<="" td=""></anzahl></td></anzahl<>	ranzbereich in mm>][<anzahl kor-<="" td=""></anzahl>
korrigierter Werte>]]]	rigierter Werte>]]]
	SPIKECORR_CH02 [ON OFF[[<anzahl< td=""></anzahl<>
	bewerteter Messwerte>][[<tole-< td=""></tole-<>
	ranzbereich in mm>][<anzahl kor-<="" td=""></anzahl>
	rigierter Werte>]]]

Ausreißerkorrektur aktivieren und parametrieren. Die Ausreißerkorrektur ist in den Werkseinstellungen nicht aktiviert.

	Werkseinstellung	Min	Max
Anzahl bewerteter Messwerte	3	1	10
Toleranzbereich in mm	0,1000000	0,000000	100,000000
Anzahl korrigierter Werte	1	1	100

Der Toleranzbereich wird in mm mit sieben Nachkommastellen angegeben.

A 5.3.11.2 Statistikberechnung

STATISTIC <signal> RESET

Setzt einzelne Statistik zurück.

- <signal>: Statistikdaten Minimum, Maximum oder Peak-Peak

A 5.3.11.3 Liste Statistiksignale

META STATISTIC

Gibt eine Liste mit den aktiven Statistiksignalen wieder. Diese Signale wurden unter STATISTICSIGNAL definiert.

A 5.3.11.4 Rücksetzen der Statistikberechnung

RESETSTATISTIC

Rücksetzen der Statistik (des aktuellen Min- und Max-Wertes).

A 5.3.11.5 Auswahl Statistiksignal

STATISTICSIGNAL <signal>

Für dieses ausgewählte Signal werden die Statistiken angelegt. Ein Liste mit möglichen Signalen findet man mit dem Befehl META STATISTICSIGNAL.

Es werden neue Signal angelegt, die dann über die Schnittstellen ausgegeben werden können.

- <signal>_MIN --> Minimum des Signales
- <signal>_MAX --> Maximum des Signales
- <signal>_PEAK --> <signal>_max <signal>_min

A 5.3.11.6 Liste möglich auszuwählender Statistiksignale

META_STATISTICSIGNAL

Listet alle möglichen Signal auf, die in die Statistik eingehen können.

A 5.3.11.7 Liste der möglich zu parametrisierenden Signale

META_MASTERSIGNAL

Listet alle möglichen Signale auf, die für das Mastern verwendet werden können.

A 5.3.11.8 Parametrisieren der Mastersignale

MASTERSIGNAL [<signal>] <master value> | NONE

Definiert das zu masternde Signal. Mit dem Parameter NONE wird das Signal wieder zurückgesetzt.

- <signal>: ein bestimmtes Mess- oder berechnetes Signal auswählen, auf das der Masterwert gesetzt werden soll
- <master value> Masterwert in mm, Wertebereich: -2147.0 ... 2147.0

A 5.3.11.9 Liste möglicher Signale für das Mastern

META MASTER

Listet alle definierten Mastersignale vom Befehl MASTERSIGNAL auf. Diese können mit dem Befehl MASTER verwendet werden.

A 5.3.11.10 Mastern / Nullsetzen

MASTER [<signal>] MASTER ALL|<signal> SET|RESET

Der Befehl MASTER ist nicht kanalspezifisch. Es gibt bis zu 10 Mastersignale in dem Controller. Diese 10 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

Mit diesem Befehl wird das Mastern für das entsprechende Signal gesetzt oder zurück gesetzt.

- ALL: alle Signale für die Masterung verwenden
- <signal>: ein bestimmtes Mess- oder berechnetes Signal f
 ür die Masterung verwenden
- SET | RESET: Funktion starten bzw. beenden

Ist der Masterwert 0, so hat die Funktion Mastern die gleiche Funktionalität wie das Nullsetzen.

Das Master-Kommando wartet maximal 2 Sekunden auf den nächsten Messwert und benutzt diesen als Master-Wert. Wenn innerhalb dieser Zeit kein Messwert aufgenommen wurde, z.B. bei externer Triggerung, kehrt das Kommando mit dem Fehler "E32 Timeout" zurück. Der Masterwert wird mit sechs Nachkommastellen verarbeitet.

A 5.3.11.11 Beispiel Mastern

Für das Beispiel wurde im Controller das Preset Gegenüberliegende Dickenmessung ausgewählt, Ausführung der Kommandos mit dem Programm Telnet, es sind keine Variablen definiert.

->0 169.254.168.150	
\ /	
Connected with the MICRO-OPTRONIC terminal server. Your IP 169.254.168.2, your local port number 54532 and you are connected to port number 23	

->META_MASTERSIGNAL	// Liste alle Variablen, auf die gemastert werden
META_MASTERSIGNAL 01DIST1 02DIST1 Thick	kann
->META_MASTER	// Liste alle Variablen, die mit einem Masterwert
META_MASTER NONE	belegt sind
->MASTERSIGNAL Thick 16.5	// Variable Thick auf den Wert 16,5 setzen
->MASTERSIGNAL 01DIST1 10	// Variable 01DIST1 auf den Wert 10 setzen
->META_MASTER	// Liste alle Variablen, die mit einem Masterwert
META_MASTER 01DIST1 Thick	belegt sind; die Variablen 01DIST1 und Thick sind nun belegt
->MASTER ALL	// Liste alle 10 möglichen Variablen auf und
MASTER Thick INACTIVE	zeige deren Status
MASTER 01DIST1 INACTIVE	
MASTER NONE	
MASTER NONE	
MASTER NONE	01DIST1 02DIST1 Thick
MASTER NONE	3.97188 mm 4.07372 mm 1.96904 mm
->MASTER ALL SET	// Lost eine Mastermessung für alle belegten Variablen aus
	01DIST1 02DIST1 Thick 10.03861 mm 2.22141 mm 16.00510 mm
->MASTER 01DIST1 RESET	// für die Variable 01DIST1 wird der Offset
	(Masterwert) zurückgenommen
	(Masterwert) zurückgenommen 01DIST1 02DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL	(Masterwert) zurückgenommen 01DIST1 02DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE	(Masterwert) zurückgenommen ^{01DIST1} 3.68267 mm ^{02DIST1} 3.53795 mm ^{16.14950} mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE 	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE	(Masterwert) zurückgenommen O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE	O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE	(Masterwert) zurückgenommen O1DIST1 O2DIST1 Thick 3.68267 mm 3.53795 mm 16.14950 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ->MASTER Thick RESET	(Masterwert) zurückgenommen
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ASTER NONE ->MASTER Thick RESET	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm (// für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 3.56958 mm
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ASTER NONE ->MASTER Thick RESET	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm // für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 3.56958 mm // Die Variable 01DIST1 wird gelöscht
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ASTER NONE ->MASTER Thick RESET ->MASTERSIGNAL 01DIST1 NONE ->MASTERSIGNAL Thick NONE	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm // für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 3.56958 mm // Die Variable 01DIST1 wird gelöscht // Die Variable Thick wird gelöscht
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ASTER NONE ->MASTER Thick RESET ->MASTERSIGNAL 01DIST1 NONE ->MASTERSIGNAL Thick NONE ->MASTER ALL	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm // für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 3.56958 mm 01DIST1 02DIST1 2.77601 mm // Die Variable 01DIST1 wird gelöscht // Die Variable Thick wird gelöscht // Lie Variable Thick wird gelöscht
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ->MASTER Thick RESET ->MASTERSIGNAL 01DIST1 NONE ->MASTERSIGNAL 01DIST1 NONE ->MASTER ALL MASTER ALL MASTER NONE	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm // für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 3.56958 mm 2.77601 mm // Die Variable 01DIST1 wird gelöscht // Die Variable Thick wird gelöscht // Die Variable Thick wird gelöscht // Die Variable Thick wird gelöscht // Lie Variable Vorhanden, auf die eine Mastermessung angewandt werden könnte
->MASTER ALL MASTER Thick ACTIVE MASTER 01DIST1 INACTIVE MASTER NONE MASTER NONE MASTER NONE MASTER NONE MASTER NONE ASTER NONE ->MASTER Thick RESET ->MASTERSIGNAL 01DIST1 NONE ->MASTERSIGNAL Thick NONE ->MASTER ALL MASTER ALL MASTER NONE 	(Masterwert) zurückgenommen 01DIST1 02DIST1 3.68267 mm 3.53795 mm 16.14950 mm // für die Variable Thick wird der Offset (Masterwert) zurückgenommen 01DIST1 02DIST1 3.65359 mm 2.77601 mm // Die Variable 01DIST1 wird gelöscht // Die Variable Thick wird gelöscht // Lie Variable Vorhanden, auf die eine Mastermessung angewandt werden könnte

A 5.3.11.12 Berechnung im Kanal

```
COMP [<channel> [<id>]]
COMP <channel> <id> MEDIAN <signal> <median data count>
COMP <channel> <id> MOVING <signal> <moving data count>
COMP <channel> <id> RECURSIVE <signal> <recursive data count>
COMP <channel> <id> CALC <factor1> <signal> <factor2> <signal>
<offset> <name>
COMP <channel> <id> THICKNESS <signal> <signal> <name>
COMP <channel> <id> COPY <signal> <name>
```

COMP <channel> <id> NONE

Mit diesem Befehl werden alle kanalspezifischen sowie controllerspezifischen Verrechnungen definiert.

- <channel> CH01 CH02 SYS</channel>	Kanalauswahl
- <id> 110</id>	Nummer Verrechnungsblock
- <signal></signal>	Messsignal; die verfügbaren Signale können Sie mit dem Befehl META_ COMP abfragen
- <median count="" data=""> 3 5 7 9</median>	Mittelungstiefe Median
 <moving count="" data=""> 2 4 8 16 32 64 </moving> 128 256 512 1024 2048 4096 	Mittelungstiefe gleitender Mittelwert
 <recursive count="" data=""> 2 32000</recursive> 	Mittelungstiefe rekursiver Mittelwert
- <factor1>, <factor2> -32768,0 32767,0</factor2></factor1>	Multiplikationsfaktor
- <offset> -2147,0 2147,0</offset>	Korrekturwert in mm
- <name></name>	Name Berechnungsblock; Länge min 2 Zeichen, max. 15 Zeichen. Erlaubte Zeichen a-zA-Z0-9, der Name muss mit einem Buchstaben beginnen.
	Nicht erlaubt sind Kommandonam- men, z. B. STATISTIC, MASTER, CALC, NONE, ALL.

Mit dem Kommando COMP können Sie neue Berechnungsblöcke anlegen, Berechnungsblöcke modifizieren oder löschen.

Funktionen:

- MEDIAN, MOVING und RECURSIVE: Mittelungsfunktionen
- CALC: Berechnungsfunktion entsprechend der Formel (<factor1> * <signal>) + (<factor2> * <signal>) + <offset>
- Thickness: Dickenberechnung entsprechend der Formel <signal B>) <signal A> unter der Bedingung, dass Signal B größer ist als Signal A
- COPY: Dupliziert ein Signal; die Wirkung lässt sich auch mit dem Kommando CALC erzielen, z. B. mit (1 * <signal>) + (0 * <signal>) + 0
- NONE: löscht einen Berechnungsblock

A 5.3.11.13 Liste möglicher Berechnungssignale

META_COMP

Listet alle möglichen Signale auf, die in der Verrechnung verwendet werden können.

A 5.3.11.14 Zweipunktskalierung Datenausgänge

SYSSIGNALRANGE <Bereichsbeginn> <Bereichsende>

Die ermittelten Werte aus der Verrechnung können größer sein, als die Werte, die der Controller darstellen kann. Mit diesem Befehl wird der Wertebereich festgelegt.

Default ist 0 bis 10 mm

A 5.3.12 Datenausgabe

A 5.3.12.1 Auswahl Digitalausgang

OUTPUT NONE | RS422 | ETHERNET | ANALOG | ERROROUT

- NONE: Keine Messwertausgabe
- RS422: Ausgabe der Messwerte über RS422
- ETHERNET: Ausgabe der Messwerte über Ethernet
- ANALOG: Ausgabe der Messwerte über den Analogausgang
- ERROROUT: Error- oder Zustandsinformationen über die Errorausgänge

Kommando startet die Messwertausgabe. Die Verbindung zum Messwertserver kann bereits bestehen oder nun hergestellt werden.

A 5.3.12.2 Ausgabe-Datenrate

OUTREDUCEDEVICE NONE | [RS422][ANALOG][ETHERNET]

Reduzierung der Messwertausgabe über die angegebenen Schnittstellen.

- NONE: Keine Reduzierung der Messwertausgabe
- RS422: Reduzierung der Messwertausgabe über RS422
- ETHERNET: Reduzierung der Messwertausgabe über Ethernet

A 5.3.12.3 Reduzierungszähler Messwertausgabe

OUTREDUCECOUNT <Anzahl>

Reduzierungszähler der Messwertausgabe.

Nur jeder n-te Messwert wird ausgegeben. Die anderen Messwerte werden verworfen.

- Anzahl: 1...3000000 (1 bedeutet alle frames)

A 5.3.12.4 Fehlerbehandlung

OUTHOLD NONE | INFINITE | < Anzahl>

Einstellen des Verhaltens der Messwertausgabe im Fehlerfall.

- NONE: Kein Halten des letzten Messwertes, Ausgabe des Fehlerwertes
- INFINITE: Unendliches Halten des letzten Messwertes
- Anzahl: Halten des letzten Messwertes über Anzahl Messzyklen und danach Ausgabe des Fehlerwertes (maximal 1024)

A 5.3.13 Auswahl der auszugebenden Messwerte

A 5.3.13.1 Allgemein

Einstellung der auszugebenden Werte über die RS422- und Ethernet-Schnittstelle.

Begrenzung der Datenmenge über die RS422 abhängig von der Messfrequenz und der Baudrate.

Die maximale Ausgabefrequenz über die Ethernet-Schnittstelle ist von der Anzahl der auszugebenden Messwerte abhängig.

Im Modus Mehrschichtmessung können beliebige Anstände und Differenzen für die Ausgabe ausgewählt werden. Alle für die Differenzberechnungen nötigen Messwerte werden bei der Ethernet-Messwertübertragung zusätzlich ausgegeben.

Über die Ethernet-Schnittstelle wird bei Abstandsmessung immer der Abstand 1 und bei Dickenmessung immer die Abstände 1 und 2 und die Differenz 1-2 ausgegeben.

A 5.3.13.2 Datenauswahl für Ethernet

OUT ETH <signal1> <signal2> ... <signalN>

Beschreibt, welche Daten über diese Schnittstelle ausgegeben werden.

A 5.3.13.3 Liste der mögliche Signale für Ethernet

META_OUT_ETH

Liste der möglichen Daten für Ethernet.

A 5.3.13.4 Liste der ausgewählten Signale, Reihenfolge über Ethernet GETOUTINFO ETH

Gibt die Reihenfolge der Signale über diese Schnittstelle wieder.

A 5.3.13.5 Datenauswahl für RS422

OUT_RS422

Beschreibt, welche Daten über diese Schnittstelle ausgegeben werden.

A 5.3.13.6 Liste der mögliche Signale für RS422

META_OUT_RS422

Liste der möglichen Daten für die RS422.

A 5.3.13.7 Liste der ausgewählten Signale, Reihenfolge über RS422

GETOUTINFO RS422

Gibt die Reihenfolge der Signale über diese Schnittstelle wieder.

A 5.3.14 Schaltausgänge

A 5.3.14.1 Error-Schaltausgänge

ERROROUT1 NONE | ER1 | ER2 | ER12 | LI1 | LI2 | LI12

ERROROUT2 NONE | ER1 | ER2 | ER12 | LI1 | LI2 | LI12

Einstellen der Fehler-Schaltausgänge.

- NONE: Keine Ausgabe an den Error-Schaltausgängen
- ER1: Schaltausgang wird bei einem Intensitätsfehler geschaltet
- ER2: Schaltausgang wird bei einem Messwert au
 ßerhalb des Messbereiches geschaltet
- ER12: Schaltausgang wird bei einem Intensitätsfehler oder einem Messwert außerhalb des Messbereiches geschaltet
- LI1: Schaltausgang wird bei Unterschreiten der unteren Grenze geschaltet
- LI2: Schaltausgang wird bei Überschreiten der oberen Grenze geschaltet
- LI12: Schaltausgang wird bei Unterschreiten der unteren Grenze oder Überschreiten der oberen Grenze geschaltet

A 5.3.14.2 Setzen des auszuwertenden Signales

ERRORLIMITSIGNALn

Auswahl des Signals, das für die Grenzwertbetrachtung verwendet werden soll.

A 5.3.14.3 Liste der möglichen Signale für den Errorausgang

META_ERRORLIMITSIGNAL

Liste mit allen möglichen Signalen, die auf die Errorausgänge wirken können.

A 5.3.14.4 Setzen der Grenzwerte

ERRORLIMITCOMPARETON [LOWER | UPPER |BOTH]

Gibt an, ob der Ausgang aktiv schalten soll bei

- LOWER --> Unterschreitung
- UPPER --> Überschreitung
- BOTH --> Unter- oder Überschreitung

A 5.3.14.5 Setzen des Wertes

ERRORLIMITVALUESn

Setzt die Werte für die Grenzwerte Lower und Upper.

A 5.3.14.6 Schaltverhalten der Fehlerausgänge

ERRORLEVELOUT1 PNP | NPN | PUSHPULL | PUSHPULLNEG

ERRORLEVELOUT2 PNP | NPN | PUSHPULL | PUSHPULLNEG

Schaltverhalten der Fehlerausgänge Error 1 und Error 2.

- PNP: Schaltausgang ist High bei Fehler und offen ohne Fehler
- NPN: Schaltausgang ist Low bei Fehler und offen ohne Fehler
- PUSHPULL: Schaltausgang ist High bei Fehler und Low ohne Fehler
- PUSHPULLNEG: Schaltausgang ist Low bei Fehler und High ohne Fehler

A 5.3.15 Analogausgang

A 5.3.15.1 Datenauswahl

ANALOGOUT Signal

Auswahl des Signals, das über den Analogausgang ausgegeben werden soll. Als Parameter wird das Signal angegeben. Eine Liste mit den möglichen Signalen ist mit META_ANALOGOUT zu sehen, siehe A 5.3.15.2.

A 5.3.15.2 Liste der möglichen Signale für den Analogausgang

META ANALOGOUT

Listet alle Signale, die auf den Analogausgang gelegt werden können.

A 5.3.15.3 Ausgabebereich

ANALOGRANGE 0-5V | 0-10V | 4-20mA

- 0 5 V: Der Analogausgang gibt eine Spannung von 0 bis 5 Volt aus.
- 0 10 V: Der Analogausgang gibt eine Spannung von 0 bis 10 Volt aus.
- 4 20 mA: Der Analogausgang gibt eine Stromstärke von 4 bis 20 Milliampere aus.

A 5.3.15.4 Einstellung der Skalierung des DAC

ANALOGSCALEMODE STANDARD | TWOPOINT

Trifft die Auswahl über eine Verwendung der Einpunkt- oder Zweipunktskalierung des Analogausgangs.

- STANDARD --> Einpunktskalierung
- TWOPOINT --> Zweipunktskalierung

Die Standard-Skalierung ist für Abstände -MB/2 bis MB/2 und für Dickenmessung auf 0 bis 2 MB (MB=Messbereich) ausgelegt.

Der minimale und maximale Messwert muss in Millimetern angegeben werden. Der verfügbare Ausgabebereich des Analogausgangs wird dann zwischen dem minimalen und maximalen Messwert gespreizt. Der minimale und maximale Messwert muss zwischen -2147.0 und 2147.0 liegen.

Der minimale und maximale Messwert wird mit drei Nachkommastellen verarbeitet.

A 5.3.15.5 Einstellung des Skalierungsbereiches

ANALOGSCALERANGE <lower limit> < upper limit>

Gibt die Grenzen für die Zweipunktskalierung an.

A 5.3.16 Tastenfunktionen

A 5.3.16.1 Mehrfunktionstaste

IFC2421 / IFC2465	IFC2422 / IFC2466
KEYFUNC1 NONE DARKCORR MASTERSET MASTERRESET LED KEYFUNC2 NONE DARKCORR MASTERSET MASTERRESET LED	KEYFUNC1 NONE DARKCORR DARK- CORR_CH01 DARKCORR_CH02 MASTER MASTERRESET LED LED_CH01 LED_CH02 KEYFUNC2 NONE DARKCORR DARK- CORR_CH01 DARKCORR_CH02 MASTER MASTERRESET LED LED_CH01 LED_CH02
Zeitber	eich 0 2 s
- NONE: Keine Funktion	- NONE: Keine Funktion
- DARKCORR: Dunkelabgleich, siehe Kommando DARKCORR	 DARKCORR_CH01: Dunkelabgleich f ür Kanal/Sensor 1.
- MASTERSET: Startet die Master- funktion, siehe 6.4.2. Betroffen sind	 DARKCORR_CH02: Dunkelabgleich f ür Kanal/Sensor 2.
alle Signale, die mit dem Kommando KEYMASTERSIGNALSELECT ausge- wählt wurden. - MASTERRESET: Beendet die Master-	- MASTERSET: Startet die Masterfunktion, siehe 6.4.2. Betroffen sind alle Signale, die mit dem Kommando KEYMASTERSIGNAL- SELECT ausgewählt wurden.
funktion. - LED: Schaltet wechselweise die	 MASTERRESET: Beendet die Masterfunk- tion.
Lichtquelle für den Sensor ein/aus.	 LED_CH01: Schaltet wechselweise die Lichtquelle f ür den Sensor 1 ein/aus.
	 LED_CH02: Schaltet wechselweise die Lichtquelle f ür den Sensor 2 ein/aus.
Zeitber	eich 2 5 s
- NONE: Keine Funktion	- NONE: Keine Funktion
 DARKCORR: Dunkelabgleich, siehe Kommando DARKCORR 	 DARKCORR_CH01: Dunkelabgleich f ür Kanal/Sensor 1.
- MASTERSET: Startet die Master- funktion, siehe 6.4.2. Betroffen sind	 DARKCORR_CH02: Dunkelabgleich f ür Kanal/Sensor 2.
alle Signale, die mit dem Kommando KEYMASTERSIGNALSELECT ausge- wählt wurden.	 MASTERSET: Startet die Masterfunktion, siehe 6.4.2. Betroffen sind alle Signale, die mit dem Kommando KEYMASTERSIGNAL- SELECT ausgewählt wurden
funktion.	MASTERRESET: Beendet die Masterfunk- tion
Lichtquelle für den Sensor ein/aus.	 LED_CH01: Schaltet wechselweise die Lichtquelle f ür den Sensor 1 ein/aus.
	- LED_CH02: Schaltet wechselweise die Lichtquelle für den Sensor 2 ein/aus.

A 5.3.16.2 Signalauswahl für Mastern mit Multifunktionstaste

KEYMASTERSIGNALSELECT ALL | <signal> [<signal2> [...]]

Auswahl der Messsignale, die via Tastendruck gemastert werden sollen. Die verfügbaren Signale können Sie mit dem Befehl META_MASTER abfragen. Mit MASTERSIGNAL konfigurieren Sie die Signale, die gemastert werden können.

A 5.3.16.3 Tastensperre

KEYLOCK NONE | ACTIVE | (AUTO [<value>])

Auswahl der Tastensperre.

- NONE: Taste funktioniert ständig, keine Tastensperre
- ACTIVE: Tastensperre wird sofort nach Neustart aktiviert
- AUTO: Tastensperre wird erst <time> Sekunden nach Neustart aktiviert

A 5.4 Messwert-Format

A 5.4.1 Aufbau

Der Aufbau von Messwert-Frames, siehe A 5.5.2.2, hängt von der Auswahl der Messwerte ab bzw. von der Wahl eines Presets. In der nachfolgenden Übersicht finden Sie eine Zusammenfassung an Kommandos, mit denen Sie die verfügbaren Messwerte über Ethernet oder RS422 abfragen können.

Kap. A 5.3.13.2	OUT_ETH	Datenauswahl für Ethernet		
Kap. A 5.3.13.3	META_OUT_ETH	Liste möglicher Signale Ethernet		
Kap. A 5.3.13.4	GETOUTINFO_ETH	Liste ausgewählter Signale, Reihenfolge über Ethernet		
Kap. A 5.3.13.5	OUT_RS422	Datenauswahl für RS422		
Kap. A 5.3.13.6	META_OUT_RS422	Liste möglicher Signale RS422		
Kap. A 5.3.13.7	GETOUTINFO_RS422	Liste ausgewählter Signale, Reihenfolge über RS422		

Beispiele für die Struktur eines Datenblocks, Abfrage mit Telnet:

Preset Standard: matt	Preset Einseitige Dickenmessung
->META_OUT_ETH	->META_OUT_ETH
META_OUT_ETH 01RAW 01DARK 01LIGHT 02RAW 02DARK 02LIGHT 01SHUTTER 01ENCODER1 01ENCODER2 01INTENSITY 01DIST1 02SHUTTER 02ENCODER1 02ENCODER2 02INTENSITY 02DIST1 MEASRATE TRIGTIMEDIFF TIMESTAMP TIMESTAMP_HIGH TIMESTAMP_LOW COUNTER	META_OUT_ETH 01RAW 01DARK 01LIGHT 02RAW 02DARK 02LIGHT 01SHUTTER 01ENCODER1 01ENCODER2 01INTENSITY 01DIST1 01DIST2 02SHUTTER 02ENCODER1 02ENCODER2 02INTENSITY 02DIST1 02DIST2 MEASRATE TRIGTIMEDIFF TIMESTAMP TIMESTAMP_HIGH TIMESTAMP_LOW COUNTER Ch01Thick12 Ch02Thick12
->GETOUTINFO_ETH	->GETOUTINFO_ETH
GETOUTINFO_ETH 01SHUTTER 01INTENSITY1 01DIST1 02SHUTTER 02INTENSITY1 02DIST1 ->	GETOUTINFO_ETH 01SHUTTER 01INTENSITY1 01DIST1 01INTENSITY2 01DIST2 02SHUTTER 02INTENSITY1 02DIST1 02INTENSITY2 02DIST2 Ch01Thick12 Ch02Thick12 ->

Ein Messwert-Frame ist dynamisch aufgebaut, d.h. nicht ausgewählte Werte werden nicht übertragen.

A 5.4.2 Videosignal

Es können die Videosignale übertragen werden, die im Signalverarbeitungsprozess berechnet wurden. Ein Videosignal umfasst 512 Pixel. Ein Pixel wird durch einen 16 Bit-Wort beschrieben. Der genutzte Wertebereich ist 0...16383.

Es gibt fünf zugängliche Videosignale:

- Rohsignal
- Dunkelkorrigiertes Signal
- Hellkorrigiertes Signal

Die Dunkelwertetabelle und die Hellwertetabelle können Sie mit den Kommandos DARKCORR PRINT bzw. LIGHTCORR PRINT abfragen.

Pixel 0	Pixel 1	 Pixel 511
Rohsignal, 16 Bit	Rohsignal	Rohsignal
Dunkelkorrigiertes Signal, 16 Bit	Dunkelkorrigiertes Signal	 Dunkelkorrigiertes Signal
Hellkorrigiertes Signal, 16 Bit	Hellkorrigiertes Signal	Hellkorrigiertes Signal

Abb. 87 Datenstruktur der Videosignale

A 5.4.3 Belichtungszeit

Das Datenwort zur Belichtungszeit ist bei Übertragung über Ethernet 32 Bit breit. Die Auflösung beträgt 100 ns.

Die Ausgabe der Belichtungszeit über die RS422-Schnittstelle erfolgt mit einer Auflösung von 100 ns. Bei den Controllern IFC2421/2422 ist keine Umrechnung erforderlich, wohingegen bei den Controllern IFC2465/2466 der Ausgabewert durch 9 geteilt werden muss. Das Datenwort ist dafür 18 Bit breit.

A 5.4.4 Encoder

Die Encoderwerte zur Übertragung können einzeln ausgewählt werden. Über Ethernet wird ein 32 Bit-Datenwort (unsigned integer) mit der Encoderposition ausgeben. Bei der Übertragung über RS422 werden nur die unteren 18 Bit der Encoderwerte übertragen.

A 5.4.5 Messwertzähler

Die Übertragung des Messwertzählers über Ethernet erfolgt als 32 Bit-Wert (unsigned integer). Auf der RS422-Schnittstelle werden nur die unteren 18 Bit des Profilzählers übertragen.

A 5.4.6 Zeitstempel

Systemintern beträgt die Auflösung des Zeitstempels 1 μ s. Für den Ethernet-Transfer wird ein 32 Bit-Datenwort (unsigned integer) mit der systeminternen Auflösung ausgegeben.

Bei der Übertragung über RS422 werden zwei 18 Bit-Datenworte bereitgestellt (TIME-STAMP_LOW und TIMESTAMP_HIGH).

A 5.4.7 Messdaten (Abstände und Intensitäten)

Es werden für jeden ausgewählten Abstand eine Intensität (sofern ausgewählt) und ein Messwert übertragen. Für die Ethernet-Übertragung werden dafür jeweils 32 Bit genutzt. Der Aufbau des Datenwort für die Intensität wird in der folgenden Tabelle, siehe Abb. 88, gezeigt. Die Auflösung der Abstandswerte beträgt 1 nm auf der Ethernetstrecke, die Ausgabe ist vorzeichenbehaftet. Das Format für RS422 wird beschrieben, siehe A 5.5.1.

Bit-Position	Beschreibung
0 - 10	Intensität des Peaks (100 % entsprechen 1024)
11 - 15	Reserviert
16 - 29	Maximum des Peaks (aus dunkelkorrigiertem Signal)
30 - 31	Reserviert

Abb. 88 Tabelle Intensität

Bei der Übertragung über RS422 wird nur ,Intensität des Peaks' übertragen (die unteren 10 Bit).

Der Intensitätswert wird nach folgender Berechnungsvorschrift ermittelt:

Intensität = <u>Max_dark</u> <u>Sättigung - Max_raw + Max_dark</u>

- Max_dark bezieht sich auf das dunkelkorrigierte Signal.
- Max_raw bezieht sich auf das Rohsignal.
- Sättigung bezieht sich auf den AD-Bereich (2¹⁴⁻¹).

A 5.4.8 Triggerzeitdifferenz

Die Triggerzeitdifferenz wird über Ethernet als 32 Bit unsigned Integer bzw. über RS422 als 18 Bit unsigned Integer mit einer Auflösung von 100 ns ausgegeben.

Wertebereich 0....100000

A 5.4.9 Differenzen (Dicken)

Berechnete Differenzen zwischen zwei Abständen haben das gleiche Format wie die Abstände.

Es werden zuerst die ausgewählten Differenzen zwischen dem Abstand 1 und den anderen Abständen ausgegeben, danach die von Abstand 2, ...

Die Differenzen werden als 32 Bit signed Integer-Wert mit einer Auflösung von 1 nm dargestellt. Das RS422-Format wird dokumentiert, siehe A 5.5.1.

A 5.4.10 Statistikwerte

Die Statistikwerte haben das gleiche Format wie die Abstände.

Es wird (sofern ausgewählt) zuerst Minimum, dann Maximum und am Ende Peak-zu-Peak übertragen.

Die Statistikwerte werden als 32 Bit signed Integer-Wert mit einer Auflösung von 1 nm dargestellt bzw. im Format für die RS422-Schnittstelle.

A 5.4.11 Peaksymmetrie

Der Peaksymmetriewert wird über Ethernet als 32 Bit (signed integer) Festkommazahl mit 18 Bit Nachkommastellen bzw. über RS422 als 18 Bit (signed integer) mit 4 Bit Nachkommastellen ausgegeben.

A 5.5 Mess-Datenformate

A 5.5.1 Datenformat RS422-Schnittstelle

A 5.5.1.1 Videodaten

<preamble></preamble>	<size></size>	<video data=""></video>	<end></end>
Startkennung	Size 32 Bit	16 Bit unsigned	Endkennung
64 Bit	Größe der Videodaten		32 Bit
0xFFFF00FFFF000000	in Byte		0xFEFE0000

Abb. 89 Aufbau eines Videoframes

Datenstruktur, siehe Abb. 87.

A 5.5.1.2 Messwerte

Die Ausgabe von Abstands-Messwerten und weiteren Messwerten über RS422 benötigt eine nachfolgende Umrechnung in die entsprechende Einheit. Die Messwertdaten, sofern angefordert, folgen immer einem Videoframe.

Ausgabewert 1:

	Prea	mble	Datenbits					
L-Byte	0	0	D5	D4	D3	D2	D1	D0
M-Byte	0	1	D11	D10	D9	D8	D7	D6
H-Byte	1	0	D17	D16	D15	D14	D13	D12

Ausgabewert 2 ... 32:

	Prea	mble	Datenbits					
L-Byte	0	0	D5	D4	D3	D2	D1	D0
M-Byte	0	1	D11	D10	D9	D8	D7	D6
H-Byte	1	1	D17	D16	D15	D14	D13	D12

Wertebereiche für die Abstands- und Dickenmessung:

131000 = Messbereichsmitte für die Abstandsmessung

MB = Messbereich

Die linearisierten Messwerte können nach der folgenden Formel in Millimeter umgerechnet werden:

$$x = \frac{(d_{_{OUT}} - 98232) * MB}{65536}$$

x = Abstand / Dicke in mm d_{OUT} = digitaler Ausgabewert MB = Messbereich in mm Alle Werte größer als 262072 sind Fehlerwerte und sind wie folgt definiert:

Fehler-Code	Beschreibung
262073	Skalierungsfehler RS422-Schnittstelle Unterlauf
262074	Skalierungsfehler RS422-Schnittstelle Überlauf
262075	Zu große Datenmenge für gewählte Baudrate ¹
262076	Es ist kein Peak vorhanden.
262077	Peak liegt vor dem Messbereich (MB)
262078	Peak liegt hinter dem Messbereich (MB)
262079	Messwert kann nicht berechnet werden

Für alle anderen Datenausgaben außer den Messwertdaten sind die Einschränkungen in den entsprechenden Abschnitten, siehe 5, definiert.

1) Dieser Fehler tritt auf, wenn mehr Daten ausgegeben werden sollen, als mit gewählter Baudrate bei gewählter Messfrequenz übertragen werden können. Um den Fehler zu beheben, gibt es folgende Möglichkeiten:

- Baudrate erhöhen, siehe A 5.3.7.4
- Messfrequenz verringern, siehe A 5.3.9.5
- Datenmenge verringern; wenn 2 Datenworte ausgewählt wurden, auf ein Datenwort reduzieren, siehe A 5.3.13
- Ausgabe-Datenraterate reduzieren, siehe A 5.3.12.2

A 5.5.2 Messdatenübertragung an einen Messwertserver über Ethernet

A 5.5.2.1 Allgemein

Bei der Messwertdatenübertragung an einen Messwertserver sendet der Controller nach erfolgreichen Verbindungsaufbau (TCP oder UDP) jeden Messwert an den Messwertserver oder an den verbundenen Client. Dafür ist keine explizite Anforderung erforderlich.

Alle Abstände und zusätzlich zu übertragenden Informationen, die zu einem Zeitpunkt aufgenommen wurden, werden zu einem Messwert-Frame zusammengefasst. Mehrere Messwert-Frames werden zu einem Messwert-Block zusammengefasst, welcher einen Header erhält und in ein TCP/IP oder UDP/IP Paket passt. Der Header steht zwingend am Anfang eines UDP- oder TCP-Pakets. Bei Änderungen der übertragenen Daten oder der Framerate wird automatisch ein neuer Header geschickt.

Alle Messdaten und der Header werden im Little Endian Format übertragen.

Präambel (32 Bit)
Artikel-Nummer (32 Bit)
Serien-Nummer (32 Bit)
Länge Videodaten (32 Bit)
Länge Messdaten (32 Bit)
Frame Anzahl (32 Bit)
Counter (32 Bit)

Der Aufbau eines Header ist für Video- und Messdatentransfer gleich.

Header-Eintrag	Beschreibung
Präambel	uint32_t - 0x41544144 "DATA"
Artikel-Nummer	
Serien-Nummer	
Länge Videodaten	[Byte]
Länge Messdaten	[Byte]
Frame Anzahl	Anzahl an Frames, die dieser Header abdeckt. Bei Videoausgabe ist das Feld für Anzahl der Messdatenframes im Paket auf eins gesetzt.
Counter	Zähler über die Anzahl der verarbeiteten Messwerte

Beispiel: Die Daten Encoder 1, Abstand und Intensität werden übertragen.

	Header				Frame 1	Frame 2	Frame n	Header	
Preamble (32 Bit)	Order Number (32 Bit)	Serial Number (32 Bit)	Length video data (32 Bit)	Length measure- ment data (32 Bit)	Number of fran per data block (32 Bit)	nes Counter (32 Bit)	Encoder value (32 Bit)	Intensity value (32 Bit)	Distanc value (32 Bit)

Abb. 90 Beispiel für eine Datenübertragung mit Ethernet

A 5.5.2.2 Messwertframe

Ein Datenpaket enthält mindestens ein Messdatenframe, üblicherweise mehrere.

Ein Messdatenframe umfasst eines oder mehrere Signale. Der Inhalt eines Messdatenframes kann über das Kommando out_eth gesetzt werden. Die Struktur eines Messwertframes kann via getoutinfo_eth abgefragt werden.

out_eth	Signalbezeichnung	Datentyp/ Wortoboroich	Skalierung	Einheit
Parameter				
01RAW	Rohvideosignal Kanal 1	512 x uint16_t 0 4095	-	ADC Digits
01DARK	Dunkelkorrgiertes VS Kanal 1	512 x uint16_t 0 4095	-	
01LIGHT	Hellkorrigiertes VS Kanal 1	512 x uint16_t 0 65535	-	
02RAW	Rohvideosignal Kanal 2	512 x uint16_t 0 4095	-	
02DARK	Dunkelkorrgiertes VS Kanal 2	512 x uint16_t 0 4095	-	
02LIGHT	Hellkorrigiertes VS Kanal 2	512 x uint16_t 0 65535	-	
01SHUTTER	Belichtungszeit Kanal 1	uint32_t 10 100000	IFC2421/22: value / 10 IFC2465/66: value / 36	μs
01ENCODER1	Encoder 1 Kanal 1	uint32_t 0 2 ^ 32-1	-	Ticks
01ENCODER2	Encoder 2 Kanal 1	uint32_t 0 2 ^ 32-1	-	Ticks
01INTENSITY	Intensität der Peaks auf Kanal 1	uint32_t 0 1024	(value&7FF) / 1024*100	%
01DIST1 01DIST2 01DIST3 01DIST4	Abstände Peak 1 bis 6 für Kanal 1 Fehlercodes, siehe A 5.5.2.4	int32_t INT32_MIN INT32_MAX	-	nm
01DIST5 01DIST6				
02SHUTTER	Belichtungszeit Kanal 2	uint32_t 10 100000	value / 10	μs
02ENCODER1	Encoder 1 Kanal 2	uint32_t 0 2 ^ 32-1	-	Ticks
02ENCODER2	Encoder 2 Kanal 2	uint32_t 0 2 ^ 32-1	-	Ticks
02INTENSITY	Intensität der Peaks auf Kanal 2	uint32_t 0 1024	(value&7FF) / 1024*100	%
02DIST1 02DIST2 02DIST2	Abstände Peak 1 bis 6 für Kanal 2	int32_t INT32_MIN	-	nm
02DIST3 02DIST4 02DIST5 02DIST6	Fehlercodes, siehe A 5.5.2.4.	INT32_MAX		
MEASRATE	Samplerate	uint32_t 1538 100000	10*1000 /value	kHz
TIMESTAMP	Zeitstempel	uint32_t 0 2 ^ 32-1	value / 1000000	S
COUNTER	Zähler Messwertframes	uint32_t 02 ^ 32-1	-	
STATE	Statuswort	uint32_t 02 ^ 32-1	-	-
01PEAK	Peaksymmetriewert Kanal 1	int32_t -8191 8191 (18 Bit Nachkommstellen)	-	
02PEAK	Peaksymmetriewert Kanal 2	int32_t -8191 8191 (18 Bit Nachkommstellen)	-	

Durch das COMP-Modul konfigurierte und berechnete Signale sind vom Datentyp und Wertebereich identisch zu den Abstandswerten.

A 5.5.2.3 Beispiel

Im nachfolgenden Beispiel sollen die Belichtungszeit, Abstand 1 und 2 sowie die Intensität für Kanal 1 und 2 ausgegeben werden.

- Auswertung von zwei Peaks festlegen:

PEAKCOUNT_CH01 2 PEAKCOUNT_CH02 2

- Setzen der Signale mit OUT_ETH:

```
OUT ETH 01SHUTTER 01DIST1 01DIST2 01INTENSITY 02SHUTTER 02DIST1 02DIST2 02INTENSITY
```

- Abfrage der Signalreihenfolge im Messwertframe:

GETOUTINFO_ETH 01SHUTTER 01INTENSITY1 01DIST1 01INTENSITY2 01DIST2 02SHUTTER 02INTENSITY1 02DIST1 02INTENSITY2 02DIST2

- Start der Ausgabe:

OUTPUT Ethernet

A 5.5.2.4 Fehlercodes Ethernet-Schnittstelle

Innerhalb der Abstandswerte, siehe A 5.5.2.2, ist ein Bereich von 0x7FFFFF00 ... 0x7FFFFFF für Fehlerwerte/Fehlercodes reserviert. Aktuell sind folgende Fehlercodes definiert:

Fehler-Code	Beschreibung
0x7FFFFF04	Es ist kein Peak vorhanden
0x7FFFFF05	Peak liegt vor dem Messbereich (MB)
0x7FFFFF06	Peak liegt hinter dem Messbereich (MB)
0x7FFFFF07	Messwert kann nicht berechnet werden
0x7FFFF08	Messwert ist außerhalb des darstellbaren Bereichs

A 5.5.3 Ethernet Videosignalübertragung

Die Videosignalübertragung erfolgt analog zur Messdatenübertragung an einen Messwertserver über Ethernet, siehe A 5.5.2, außer dass immer nur ein Videosignal in einem Messwert-Block übertragen wird.

Dieser Messwert-Block kann je nach Größe des Videosignals auch über mehrere TCP/IP oder UDP/IP Pakete gehen.

Die Präambel für die Videosignale lautet 0x41544144 "DATA".

Anforderung eines Videosignals:

Verwenden Sie dazu die Kommandos OUT ETH und OUT RS422.

OUTPUT ETHERNET -> Ausgabe über Ethernet

A 5.6 Warn- und Fehlermeldungen

E200 I/O operation failed

E202 Access denied

E204 Received unsupported character

E205 Unexpected quotation mark

E210 Unknown command

E212 Command not available in current context

E214 Entered command is too long to be processed

E230 Unknown parameter

E231 Empty parameters are not allowed

E232 Wrong parameter count

E233 Command has too many parameters

E234 Wrong or unknown parameter type

E236 Value is out of range or the format is invalid

E262 Active signal transfer, please stop before

E270 No signals selected

E272 Invalid combination of signal parameters, please check measure mode and signal selection

E276 Given signal is not selected for output

E277 One or more values were unavailable. Please check output signal selection

E281 Not enough memory available

E282 Unknown output signal

E283 Output signal is unavailable with the current configuration

E284 No configuration entry was found for the given signal

E285 Name is too long

E286 Names must begin with an alphabetic character, and be 2 to 15 characters long. Permitted characters are: a-zA-Z0-9_

E320 Wrong info-data of the update

E321 Update file is too large

E322 Error during data transmission of the update

E323 Timeout during the update

E324 File is not valid for this sensor

E325 Invalid file type

E327 Invalid checksum

E331 Validation of import file failed

E332 Error during import

E333 No overwrite during import allowed

E340 Too many output values for RS422 selected

E350 The new passwords are not identical

E351 No password given

E360 Name already exists or not allowed

E361 Name begins or ends with spaces or is empty

E362 Storage region is full

E363 Setting name not found

E364 Setting is invalid

E500 Material table is empty

E502 Material table is full

E504 Material name not found

E600 ROI begin must be less than ROI end

E602 Master value is out of range

E603 One or more values were out of range

E610 Encoder: minimum is greater than maximum

E611 Encoder's start value must be less than the maximum value

E615 Synchronization as slave and triggering at level or edge are not possible at the same time

E616 Software triggering is not active

E618 Sensor head not available

E621 The entry already exists

E622 The requested dataset/table doesn't exist.

E623 Not available in EtherCAT mode

E624 Not allowed when EtherCAT SYNC0 synchronization is active

W505 Refractivity correction deactivated, vacuum is used as material

W526 Output signal selection modified by the system

W528 The shutter time has been changed to match the measurement rate and the system requirements.

W530 The IP settings has been changed.

A 6 EtherCAT-Dokumentation

A 6.1 Allgemein

EtherCAT® ist aus Sicht des Ethernet ein einzelner großer Ethernet-Teilnehmer, der Ethernet-Telegramme sendet und empfängt. Ein solches EtherCAT-System besteht aus einem EtherCAT-Master und bis zu 65535 EtherCAT-Slaves.

Master und Slaves kommunizieren über eine standardmäßige Ethernet-Verkabelung. In jedem Slave kommt eine On-the-fly-Verarbeitungshardware zum Einsatz. Die eingehenden Ethernetframes werden von der Hardware direkt verarbeitet. Relevante Daten werden aus dem Frame extrahiert bzw. eingesetzt. Der Frame wird danach zum nächsten EtherCAT®-Slave-Gerät weiter gesendet. Vom letzten Slave- Gerät wird der vollständig verarbeitete Frame zurückgesendet. In der Anwendungsebene können verschiedene Protokolle verwendet werden. Unterstützt wird hier die CANopen over EtherCAT-Technology (CoE). Im CANopen- Protokoll wird eine Objektverzeichnisstruktur mit Servicedatenobjekten (SDO) und Prozessdatenobjekte (PDO) verwendet, um die Daten zu verwalten. Weitergehende Informationen erhalten Sie von der ® Technology Group (www.ethercat. org) bzw. Beckhoff GmbH, (www.beckhoff.com).

A 6.2 Wechsel Ethernet EtherCAT

Die Umschaltung zwischen Ethernet und EtherCAT ist über einen ASCII-Befehl, siehe A 5.3.7.5, oder EtherCAT-Objekt, siehe A 6.4.2.21, möglich. Die Umschaltung erfolgt erst nach einem Neustart des Controllers. Speichern Sie vor dem Wechsel zu EtherCAT die aktuellen Einstellungen.

Die RS422-Schnittstelle für das Senden eines ASCII-Befehls ist sowohl im Ethernet-Mode als auch im EtherCAT-Mode verfügbar.

A 6.3 Einleitung

A 6.3.1 Struktur von EtherCAT®-Frames

Die Übertragung der Daten geschieht in Ethernet- Frames mit einem speziellen Ether-Type (0x88A4). Solch ein EtherCAT®-Frame besteht aus einem oder mehreren EtherCAT®-Telegrammen, welche jeweils an einzelne Slaves / Speicherbereiche adressiert sind. Die Telegramme werden entweder direkt im Datenbereich des Ethernetframes oder im Datenbereich des UDP-Datagrams übertragen. Ein EtherCAT®-Telegramm besteht aus einen EtherCAT®-Header, dem Datenbereich und dem Arbeitszähler (WC). Der Arbeitszähler wird von jedem adressierten EtherCAT®-Slave hochgezählt, der zugehörige Daten ausgetauscht hat.

Abb. 92 Aufbau von EtherCAT-Frames

A 6.3.2 EtherCAT®-Dienste

In EtherCAT® sind Dienste für das Lesen und Schreiben von Daten im physikalischen Speicher innerhalb der Slave Hardware spezifiziert. Durch die Slave Hardware werden folgende EtherCAT®-Dienste unterstützt:

- APRD (Autoincrement physical read, Lesen eines physikalischen Bereiches mit Autoincrement-Adressierung)
- APWR (Autoincrement physical write, Schreiben eines physikalischen Bereiches mit Auto-Inkrement-Adressierung)
- APRW (Autoincrement physical read write, Lesen und Schreiben eines physikalischen Bereiches mit Auto-Inkrement-Adressierung)
- FPRD (Configured address read, Lesen eines physikalischen Bereiches mit Fixed-Adressierung)
- FPWR (Configured address write, Schreiben eines physikalischen Bereiches mit Fixed-Adressierung)
- FPRW (Configured address read write, Lesen und Schreiben eines physikalischen Bereiches mit Fixed-Adressierung)
- BRD (Broadcast read, Broadcast-Lesen eines physikalischen Bereiches bei allen Slaves)
- BWR (Broadcast write, Broadcast-Schreiben eines physikalischen Bereiches bei allen Slaves)
- LRD (Logical read, Lesen eines logischen Speicherbereiches)
- LWR (Logical write, Schreiben eines logischen Speicherbereiches)
- LRW (Logical read write, Lesen und Schreiben eines logischen Speicherbereiches)
- ARMW (Auto increment physical read multiple write, Lesen eines physikalischen Bereiches mit Auto-Increment-Adressierung, mehrfaches Schreiben)
- FRMW (Configured address read multiple write, Lesen eines physikalischen Bereiches mit Fixed-Adressierung, mehrfaches Schreiben)

A 6.3.3 Adressierverfahren und FMMUs

Um einen Slave im EtherCAT®-System zu adressieren, können vom Master verschiedene Verfahren angewendet werden. Das confocalDT 2421/2422/2465/2466 unterstützt als Full-Slave:

Positionsadressierung
 Das Slave-Gerät wird über seine physikalische Position im EtherCAT®-Segment adressiert.

Die verwendeten Dienste hierfür sind APRD, APWR, APRW.

- Knotenadressierung

Das Slave-Gerät wird über eine konfigurierte Knotenadresse adressiert, die vom Master während der Inbetriebnahmephase zugewiesen wurde. Die verwendeten Dienste hierfür sind FPRD, FPWR und FPRW.

- Logische Adressierung

Die Slaves werden nicht einzeln adressiert; stattdessen wird ein Abschnitt der segmentweiten logischen 4-GB-Adresse adressiert. Dieser Abschnitt kann von einer Reihe von Slaves verwendet werden.

Die verwendeten Dienste hierfür sind LRD, LWR und LRW.

Die lokale Zuordnung von physikalischen Slave-Speicheradressen und logischen segmentweiten Adressen wird durch die Fieldbus Memory Management Units (FMMUs) vorgenommen. Die Konfiguration der Slave-FMMU's wird vom Master durchgeführt. Die FMMU Konfiguration enthält eine Startadresse des physikalischen Speichers im Slave, eine logische Startadresse im globalen Adressraum, Länge und Typ der Daten, sowie die Richtung (Eingang oder Ausgang) der Prozessdaten.

A 6.3.4 Sync Manager

Sync-Manager dienen der Datenkonsistenz beim Datenaustausch zwischen EtherCAT®-Master und Slave. Jeder Sync-Manager-Kanal definiert einen Bereich des Anwendungsspeichers. Das confocalDT 2421/2422/2465/2466 besitzt vier Kanäle:

- Sync-Manager-Kanal 0: Sync Manager 0 wird für Mailbox-Schreibübertragungen verwendet (Mailbox vom Master zum Slave).
- Sync-Manager-Kanal 1: Sync Manager 1 wird f
 ür Mailbox-Lese
 übertragungen verwendet (Mailbox vom Slave zum Master).
- Sync-Manager-Kanal 2: Sync Manager 2 wird normalerweise für Prozess-Ausgangsdaten verwendet. Im Controller nicht benutzt.
- Sync-Manager-Kanal 3: Sync Manager 3 wird für Prozess-Eingangsdaten verwendet. Er enthält die Tx PDOs, die vom PDO-Zuweisungsobjekt 0x1C13 (hex.) spezifiziert werden.

A 6.3.5 EtherCAT-Zustandsmaschine

In jedem EtherCAT®-Slave ist die EtherCAT®-Zustandsmaschine implementiert. Direkt nach dem Einschalten des confocalDT 2421/2422/2465/2466 befindet sich die Zustandsmaschine im Zustand "Initialization". In diesem Zustand hat der Master Zugriff auf die DLL-Information Register der Slave Hardware. Die Mailbox ist noch nicht initialisiert, d.h. eine Kommunikation mit der Applikation (Controllersoftware) ist noch nicht möglich. Beim Übergang in den Pre-Operational-Zustand werden die Sync-Manager-Kanäle für die Mailboxkommunikation konfiguriert. Im Zustand "Pre-Operational" ist die Kommunikation über die Mailbox möglich und es kann auf das Objektverzeichnis und seine Objekte zugegriffen werden. In diesem Zustand findet noch keine Prozessdatenkommunikation statt. Beim Übergang in den "Safe-Operational"-Zustand wird vom Master das Prozessdaten-Mapping, der Sync-Manager-Kanal der Prozesseingänge und die zugehörige FMMU konfiguriert. Im "Safe-Operational"-Zustand ist weiterhin die Mailboxkommunikation möglich. Die Prozessdatenkommunikation läuft für die Eingänge. Die Ausgänge befinden sich im "sicheren" Zustand. Im "Operational"-Zustand läuft die Prozessdatenkommunikation sowohl für die Eingänge als auch für die Ausgänge.

Abb. 93 EtherCAT State Machine

A 6.3.6 CANopen über EtherCAT

Das Anwendungsschicht-Kommunikationsprotokoll in EtherCAT basiert auf dem Kommunikationsprofil CANopen DS 301 und wird als "CANopen over EtherCAT" oder CoE bezeichnet. Das Protokoll spezifiziert das Objektverzeichnis im Controller sowie Kommunikationsobjekte für den Austausch von Prozessdaten und azyklischen Meldungen. Der Controller verwendet die folgenden Meldungstypen:

- Process Data Object (PDO) (Prozessdatenobjekt). Das PDO wird f
 ür die zyklische E/A Kommunikation verwendet, also f
 ür Prozessdaten.
- Service Data Object (SDO) (Servicedatenobjekt). Das SDO wird f
 ür die azyklische Daten
 übertragung verwendet.

Das Objektverzeichnis wird in Kapitel CoE-Objektverzeichnis beschrieben.

A 6.3.7 Prozessdaten PDO-Mapping

Prozessdatenobjekte (PDOs) werden für den Austausch von zeitkritischen Prozessdaten zwischen Master und Slave verwendet. Tx PDOs werden für die Übertragung von Daten vom Slave zum Master verwendet (Eingänge). Rx PDOs werden verwendet, um Daten vom Master zum Slave (Ausgänge) zu übertragen; dies wird im confocalDT 2421/2422/2465/2466 nicht verwendet. Die PDO Abbildung (Mapping) definiert, welche Anwendungsobjekte (Messdaten) in einem PDO übertragen werden.

Beim confocalDT 2421/2422/2465/2466 kann aus einer Reihe von Tx PDO-Map-Objekten ausgewählt werden, siehe A 6.4.1.7.

In EtherCAT werden PDOs in Objekten des Sync-Manager-Kanals transportiert. Der Controller benutzt den Sync-Manager-Kanal SM3 für Eingangsdaten (Tx-Daten). Die PDO-Zuweisungen des Sync Managers können nur im Zustand "Pre-Operational" geändert werden.

Hinweis: Subindex 0h des Objektes 0x1A00 enthält die Anzahl gültiger Einträge innerhalb des Abbildungsberichts. Diese Zahl steht auch für die Anzahl der Anwendungsvariablen (Parameter), die mit dem entsprechenden PDO übertragen/empfangen werden sollen. Die Subindizes von 1h bis zur Anzahl von Objekten enthalten Informationen über die abgebildeten Anwendungsvariablen. Die Abbildungswerte in den CANopen-Objekten sind hexadezimal codiert.

Die folgende Tabelle enthält ein Beispiel der Eintragsstruktur der PDO-Abbildung:

MSB			LSB
31 10	3 15	8	7 0
Index z. B. 0x6000 (16 Bit)	Subindex z.B. 0x01		Objektlänge in Bit, z. B. 20h = 32 Bits

Abb. 94 Eintragsstruktur der PDO-Abbildung, Beispiel

A 6.3.8 Servicedaten SDO-Service

Servicedatenobjekte (SDO's) werden hauptsächlich für die Übertragung von nicht zeitkritischen Daten, zum Beispiel Parameterwerten, verwendet.

EtherCAT spezifiziert

- SDO-Dienste: diese ermöglichen den Lese-/Schreibzugriff auf Einträge im CoE-Objektverzeichnis des Geräts.
- SDO-Informationsdienste: diese ermöglichen das Lesen des Objektverzeichnisses selbst und den Zugriff auf die Eigenschaften der Objekte.

Alle Parameter des Messgerätes können damit gelesen, verändert oder Messwerte übermittelt werden. Ein gewünschter Parameter wird durch Index und Subindex innerhalb des Objektverzeichnisses adressiert.

A 6.4 CoE – Objektverzeichnis

Das CoE-Objektverzeichnis (CANopen over EtherCAT) enthält alle Konfigurationsdaten des Controllers. Die Objekte im CoE-Objektverzeichnis können mit SDO-Diensten aufgerufen werden. Jedes Objekt wird anhand eines 16-Bit-Index adressiert.

A 6.4.1 Kommunikationsspezifische Standard-Objekte

A 6.4.1.1	Ubersicht

Index (h)	Name	Beschreibung
1001	Device type	Gerätetyp
1008	Device name	Hersteller-Gerätename
1009	Hardware version	Hardware-Version
100A	Software version	Software-Version
1018	Identity	Geräte-Identifikation
1A00		TxPDO Mapping, siehe A 6.4.1.7.
 1BAB		In den PDO-Map-Objekten sind zum Teil mehrere Prozessdaten (Mappable Objects - Prozessdaten) zusammengefasst.
1C00	Sync. manager type	Synchronmanagertyp
1C12	RxPDO assign	
1C13	TxPDO assign	TxPDO assign
1C33	Sync manager input parameter	Synchronmode Parameter (DC)

Abb. 95 Übersicht Standard-Objekte

A 6.4.1.2 Objekt 1001h: Gerätetyp

1001	VAR	Device type	0x0000000	Unsigned32	ro	
Liefert Informationen über das verwendete Geräteprofil und den Gerätetyp.						

A 6.4.1.3 Objekt 1008h: Hersteller-Gerätename

1008	VAR	Device name	IFC24xx	Visible String	ro

A 6.4.1.4 Objekt 1009h: Hardware-Version

1009	VAR	Hardware version	XX	Visible String	ro
------	-----	------------------	----	----------------	----

A 6.4.1.5 Objekt 100Ah: Software-Version

|--|

A 6.4.1.6 Objekt 1018h: Geräte-Identifikation

1018	RECORD	Identity		
Subindize	es			

0	VAR	Anzahl Einträge	4	Unsigned8	ro
1	VAR	Vendor ID	0x0000607	Unsigned32	ro
2	VAR	Product-Code	0x0024E555	Unsigned32	ro
3	VAR	Revision	0x00010000	Unsigned32	ro
4	VAR	Serial number	0x009A4435	Unsigned32	ro

Im Product-Code ist die Artikelnummer, in Serial number die Seriennummer des Controllers hinterlegt.
A 6.4.1.7 TxPDO Mapping

1A00	Ch01Dist1 TxPDOMap					
	CH01DIST1 0x6000					
1A08	Ch02Dist1 TxPDOMap					
	CH02DIST1 0x6800					
1A10	Ch01Dist2 TxPDOMap					
	CH01DIST2 0x6001					
1A18	Ch02Dist2 TxPDOMap	1	1	1		1
	CH02DIST2 0x6801					
1A20	Ch01Dist3to6 TxPDOMa	ар		1		1
	CH01DIST3 0x6002	CH01DIST4 0x6003	CH01DIST5 0x6004	CH01DIST6 0x6005		
1A28	Ch02Dist2 TxPDOMap				,	1
	CH02DIST2 0x6802	CH02DIST4 0x6803	CH02DIST5	CH02DIST6 0x6805		
			0x6804			
1A30	Ch01Intensity1 TxPDOM	Лар				
	CH01INTENSITY1					
	0x6010					
1A38	Ch02Intensity1 TxPDON	Лар				
	CH02INTENSITY1 0x6810					
1A40	Ch01Intensity2 TxPDOM	Лар				
	CH01INTENSITY2					
	0x6011					
1A48	Ch02Intensity2 TxPDON	Лар				
	CH02INTENSITY2					
	0x6811					
1A50	Ch01Intensity3to6 TxPD	ОМар	1	1	1	1
	CH01INTENSITY3	CH01INTENSITY4	CH01INTENSITY5	CH01INTENSITY6		
1450	0X0012	00013	0x6014	0x0015		
TADO						
		0v6813	0v6814	0v6815		
1460	Ch01Unlin1and2	0,0010	0,0014	0,0013		
1700		CH01UNU IN2				
		0x6021				
1A68	Ch02Unlin1and2					
	CH02UNLIN1 0x6820	CH02UNLIN2				
		0x6821				
1A70	Ch01Unlin3to6 TxPDON	Лар			1	1
	CH01UNLIN3 0x6022	CH01UNLIN4	CH01UNLIN5	CH01UNLIN6		
		0x6023	0x6024	0x6025		
1A78	Ch02Unlin3to6 TxPDOM	Лар				
	CH02UNLIN3 0x6822	CH02UNLIN4	CH02UNLIN5	CH02UNLIN6		
		0x6823	0x6824	0x6825		
1A80	Ch01States TxPDOMap	1				
	CH01SHUTTER	CH01ENCODER1	CH01ENCODER2			
	0x6030	0x6050	0x6051			
1A88	Ch02States TxPDOMap		1	1	1	1
	CH02SHUTTER	CH02ENCODER1	CH02ENCODER2			
1400	0x6830	UX6850	UX6851			
1A90	Chui PeakSymm1					
1A98	Ch02PeakSymm1					
1AA0	Ch01PeakSymm2					

1448	Ch02PeakSymm2					
1480	Ch01 Deals Symm2tee					
TADU	ChurreakSymmstoo					
	CH01PEAKSYMM3	CH01PEAKSYMM4	C01PEAKSYMM5	C01PEAKSYMM6		
	0x6062	0x6063	0x6064	0x6065		
1AB8	Ch02PeakSymm3to6					
	CH02PEAKSYMM3	CH02PEAKSYMM4	CH02PEAKSYMM5	CH02PEAKSYMM6		
	0x6862	0x6863	0x6864	0x6865		
1AE0	Counter TxPDOMap					
	COUNTER 0x7000					
1AE8	States TxPDOMap					
	TIMESTAMP 0x7001					
1AF0	Frequency TxPDOMap					
	FREQUENCY 0x7002					
1B00	UserCalc01 TxPDOMap					
	UserCalcOutput01					
	0x7C00					
1B08	UserCalc02 TxPDOMap					
	UserCalcOutput02					
	0x7C01					
1B10	UserCalc03 TxPDOMap				1	1
	UserCalcOutput03					
	0x7C02					
1B18	UserCalc04 TxPDOMap	1	1	1		
	UserCalcOutput04					
	0x7C03					
1B20	UserCalc05and06 TxPD	ОМар	1	1		
	UserCalcOutput05	UserCalcOutput06				
	0x7C04	0x7C05				
		1	1	1		
1B58	UserCalc19and20 TxPD	ОМар		1		
	UserCalcOutput19	UserCalcOutput20				
1.5.00		0x7C13				
1860	UserCalc21to24 TxPDO	Map				
	UserCalcOutput21	UserCalcOutput22	UserCalcOutput23	UserCalcOutput24		
	0x7C14	0x7015	007016	0x7017		
4040						
1B48	UserCalc5/to60 IxPDO					
	UserCalcOutput57	UserCalcOutput58	UserCalcOutput59	UserCalcOutput60		
	0x7C38	0x7C39	UX/C3A	UX/C3B		

Abb. 96 PDO-Map Objekte

In Objekt 0x1C13 wird ausgewählt, welche PDOs übertragen werden sollen. Es werden die PDO-Map-Objekte ausgewählt. Die Auswahl erfolgt vor dem Übergang vom PreOP-Mode in den SafeOP-Mode.

Beispiel 1: Startup-Prozedur, um Abstand 1 von Kanal 1 (01DIST1) auszugeben:

 Abstand 1 wird in 0x6000 ausgegeben. Um 0x6000 im PDO zu übertragen, muss in 0x1C13 das PDO-Map-Objekt 0x1A00 ausgewählt werden.
 Objekt Wert Beschreibung 0x1C13:00 0x00 (0) clear sm pdos (0x1C13) 0x1A00 (6656) download pdo 0x1C13:01 index 0x1C13:00 0x01 (1) download pdo 0x1C13 count **Beispiel 2:** Startup-Prozedur um Abstand 1, Intensität 1, Belichtungszeit, Encoder 1 und Encoder 2 von Kanal 1 (01DIST1, 01INTENSITY1, 01SHUTTER, 01ENCODER1, 01ENCODER2) auszugeben.

- Abstand 1 wird in 0x6000 ausgegeben. Um 0x6000 im PDO zu übertragen, muss in 0x1C13 PDO-Map-Objekt 0x1A00 ausgewählt werden.
- Intensität 1 wird in 0x60 ausgegeben. Um 0x6010 im PDO zu übertragen, muss in 0x1C13 PDO-Map-Objekt 0x1A30 ausgewählt werden.
- Shutter wird in 0x6030 ausgegeben, Encoder 1 in 0x6050 und Encoder 2 in 0x6051. Die vier Prozessdaten sind in 0x1H80 zusammengefasst, zur Übertragung im PDO muss es in 0x1C13 ausgewählt werden.

Objekt	Wert	Beschreibung
0x1C13:00	0x00 (0)	clear sm pdos (0x1C13)
0x1C13:01	0x1A00 (6656)	download pdo 0x1C13:01 index
0x1C13:02	0x1A30 (6704)	download pdo 0x1C13:02 index
0x1C13:03	0x1A80 (6768)	download pdo 0x1C13:03 index
0x1C13:00	0x03 (3)	download pdo 0x1C13 count

A 6.4.1.8 Objekt 1C00h: Synchronmanagertyp

		overn eynennennanag						
1C00	RECORD	Sync manager type			ro			
Subindize	Subindizes							
0	VAR	Anzahl Einträge	4	Unsigned8	ro			
1	VAR	Sync manager 1	0x01	Unsigned8	ro			
2	VAR	Sync manager 2	0x02	Unsigned8	ro			
3	VAR	Sync manager 3	0x03	Unsigned8	ro			
4	VAR	Svnc manager 4	0x04	Unsigned8	ro			

A 6.4.1.9 Objekt 1C12h: RxPDO Assign

1C12	ARRAY	RxPDO-Assign			rw		
Subindizes							
0	VAR	Anzahl Einträge	0	Unsigned8	ro		

Es können keine RxPDOs ausgewählt werden, da keine vorhanden sind. Das Objekt ist als Dummy implementiert, damit ein EtherCAT-Master die RxPDOs auf 0 setzen kann.

A 6.4.1.10 Objekt 1C13h: TxPDO-Assign

1C13	ARRAY	TxPDO-Assign			rw			
Subindize	Subindizes							
0	VAR	Anzahl Einträge	n	Unsigned8	rw			
1	VAR	Subindex 001	0x1A00	Unsigned16	rw			
2	VAR	Subindex 002		Unsigned16	rw			
n	VAR	Subindex n	-	Unsigned16	rw			

Objekt zur Auswahl der PDOs (TxPDO-Maps), siehe A 6.4.1.7.

A 6.4.1.11 Objekt 1C33h: Synchronmanager Eingangsparameter

1C33	RECORD	SM input parameter			ro
Subinc	lizes				
0	VAR	Anzahl der Einträge	9	Unsigned8	ro
1	VAR	Synchronization type	х	Unsigned16	ro
2	VAR	Cycle time	х	Unsigned32	ro
4	VAR	Synchronization types supported	0x4005	Unsigned16	ro
5	VAR	Minimum cycle time	1000000	Unsigned32	ro
6	VAR	Calc and copy time	x	Unsigned32	ro
8	VAR	Get cycle time	х	Unsigned16	rw
9	VAR	Delay time		Unsigned32	ro

- Synchronization Type: aktuell eingestellte Synchronisierung

• 0: Freerun,

2: Distributed Clock Sync0 Synchronisation, siehe A 6.9.2

- Cycle Time: aktuell eingestellte Zykluszeit in ns
 - Freerun von der Messrate abgeleitete Zykluszeit,
 - Sync0 Synchronisation, die vom Master eingestellte Sync0 Zykluszeit.

Die minimale Zykluszeit (cycle time) ist von der maximalen Messrate abgeleitet und beträgt 153,846 µs.

- Synchronization Types supported: Unterstützt wird Freerun und Sync0 Synchronisation
- Calc and Copy Time , Get Cycle Time: wird Get Cycle Time auf 1 gestellt, wird die Calc and Copy time gemessen und im gleichnamigen Eintrag ausgegeben (nur bei Sync0 Synchronisation)
- Delay time: SYNC0-Impuls löst das Sampling aus, daher ist dieser Wert immer 0.

A 6.4.2 Herstellerspezifische Objekte

A 6.4.2.1 Übersicht

Index (h)	Name	IFC2421 IFC2465	IFC2422 IFC2466	Beschreibung
2001	User level	•	•	Login, Logout, Änderung Passwort
2005	Controller information	•	•	Controller-Informationen (weitere)
2011	Correction ch 1	•	•	Dunkelabgleich
3011	Correction ch 2		•	
2020	Basicsettings	•	•	Laden, Speichern, Werkseinstellung
2021	Preset	•	•	
2022	Meassettings	•	•	Messeinstellung
203F	Sensor error	•	•	Sensorfehler Kanal 1/2
2101	Reset	•	•	Controller neu starten
2105	Factory reset	•	•	Werkseinstellungen
2107	Counter reset	•	•	Zähler Beset
2133	I FD on/off ch 1	•	•	LED-Lichtquelle Kanal 1/2
3133	LED on/off ch 2		•	
2141	Video signal	•	•	Videosignal anfordern
2142	Video signal enable ch 1	•	•	Videosignal freigeben
3142	Video signal enable ch 2		•	
2150	Sensor ch 1	•	•	Sensorinformation Kanal 1/2
3150	Sensor ch 2		•	
2152	Select sensor ch 1	•	•	Sensorauswahl Kanal 1/2
3152	Select sensor ch 2		•	
2156	Multilaver options ch 1	•	•	Mehrschichtontionen Kanal 1/2
3156	Multilayer options ch 2	-	•	
2161	Peak position ch 1	•	•	Poskauswahl Kanal 1/2
3161	Peak position ch 2		•	
2162	Peak options ch 1	•	•	Peakontionen Kanal 1/2
3162	Peak options ch 2		•	
2183	Spike correction ch 1	•	•	Ausreißerkorrektur Kanal 1/2
3183	Spike correction ch 2		•	
2180	Digital interfaces	•	•	Digitale Schnittstellen
21B0	Enable output	•	•	Auswahl Schnittstelle
2100	Ethernet	•	•	Ethernet IP-Konfiguration
2100		•	•	Analogausgang Skalierung
21E3	Switching output 1	•	•	Schaltausgang 1/2
21F4	Switching output 2		•	
2250	Shutter mode ch 1	•	•	Belichtungsmodus Kanal 1/2
3250	Shutter mode ch 2		•	
2251	Measuring rate	•	•	Messrate
2440	Keylock	•	•	Multifunktionstaste am Controller sperren
2440	Keyfunc	•	•	Funktion Multifunktionstaste
2472	Epodor	•	•	
2370	Bange of interact of 1	•	•	Maskierung des Auswertebereiches Kanal 1/2
3711	Range of interest ch 2	-	•	Masherding des Ausweitebereiches Nahar 1/2
2800	Material info and edit	•	•	Materialinformation
2802	Material table edit	•	•	Materialtabelle bearbeiten
2803	Material table	•	•	Vorhandene Materialien in der Materialtabelle
2804	Material selection ch 1	•	•	Material auswählen Kanal 1/2
3804	Material selection ch 2		•	1

Index (h)	Name	IFC2421 IFC2465	IFC2422 IFC2466	Beschreibung
2A00-2A09	Master y	•	•	Masterwert, Mastern
2A10-2A09	Statistic y	•	•	Statistik
2C00-2C09	Comp y ch 1	•	•	Messwertberechnung Kanal 1/2
3C00-3C09	Comp y ch 2		•	
2CBF	Sys Signals	•	•	
2CC0-2CC9	Comp y sys	•	•	
2E00	User calc	•	•	

Das Lesen und Schreiben der herstellerspezifischen Objekte kann bei ungültigen Eingaben zu einem Fehler

 1
 führen. Diese Fehler sind in den SDO-Abort-Codes aufgeführt, siehe A 6.6. Tritt beim Schreiben eines Wertes ein Fehler auf, kann teilweise in Objekt 203F eine detaillierte Fehlerinformation abgerufen werden.

A 6.4.2.2 Objekt 2001h: User level

2001	RECORD	User level							
Subindize	Subindizes								
0	VAR	Anzahl Einträge	7	Unsigned8	ro				
1	VAR	Actual user	x	Unsigned8	ro				
2	VAR	Login		Visible string	wo				
3	VAR	Logout	FALSE	BOOL	rw				
4	VAR	Default user	x	Unsigned8	rw				
5	VAR	Password old		Visible string	wo				
6	VAR	Password new		Visible string	wo				
7	VAR	Password repeat		Visible string	wo				

Weitere Einzelheiten dazu finden Sie im Bereich Login, siehe 6.6.4 und Benutzerebene, siehe A 5.3.2.1.

Actual user, Default user:

0 - Bediener

1 - Experte

Durch Änderung des Benutzer-Levels verändern sich auch die Zugriffsrechte der Objekte. Im User-Level sind nach einem Logout alle RW-Objekte nur noch Read-Only (= ro), alle Write-Only Objekte (=wo) sind nicht mehr verfügbar.

Für das Ändern des Passwortes müssen die drei Passwörter-Felder Old, New und Repeat in der angegebenen Reihenfolge beschrieben werden. Die maximale Länge eines Passworts beträgt 31 Zeichen.

A 6.4.2.3 Objekt 2005h: Controller-Informationen (weitere)

2005	RECORD	Controller Info			ro
Subindiz	es				
0	VAR	Anzahl Einträge	8	Unsigned8	ro
1	VAR	Name	IFC24xx,	Visible String	ro
5	VAR	Serial No	XXXXXXXX	Visible String	ro
6	VAR	Option No	XXX	Visible String	ro
8	VAR	Article No	XXXXXXX	Visible String	ro

Weitere Einzelheiten dazu finden Sie im Bereich Controllerinformation, siehe A 5.3.1.2.

A 6.4.2.4 Objekt 2011h: Korrektur, Kanal 1

Correction state

2010	RECORD	Correction channel 1	channel 1		ro
Subindize	es				
0	VAR	Anzahl Einträge	3	Unsigned8	ro
1	VAR	Dark correction	FALSE	BOOL	wo

х

Unsigned32

ro

Mit Schreiben von 1 (True) auf Subindex 1 wird ein Dunkelabgleich ausgelöst. In Subindex 3 wird der Zustand der Korrektur angezeigt, die möglichen Werte sind:

- 0: keine Korrektur aktiv

VAR

- 1: Korrektur aktiv

3

- 100: Fehler beim Durchführen der Korrektur

Nach dem Auslösen der Korrektur wechselt der Status von 0 auf 1. Tritt kein Fehler auf, wechselt der Status nach Abschluss der Korrektur auf 0. Während die Korrektur aktiv ist, darf keine Einstellungen verändert werden.

Weitere Einzelheiten dazu finden Sie im Bereich Dunkelabgleich, siehe 5.5, Dunkelabgleich, siehe A 5.3.4.4.

A 6.4.2.5 Objekt 2020h: Laden, Speichern, Werkseinstellung

2020	RECORD	Basic settings			ro		
Subindizes							
0	VAR	Anzahl Einträge	3	Unsigned8	ro		
1	VAR	READ		BOOL	WO		
2	VAR	STORE		BOOL	wo		
3	VAR	SETDEFAULT		BOOL	wo		

- READ: Laden der zuletzt gespeicherten Basiseinstellungen
- STORE: Speichern der aktuellen Einstellungen
- SETDEFAULT: Zurücksetzen der Basiseinstellungen auf Werkseinstellung

A 6.4.2.6 Objekt 2021h: Preset

2021	RECORD	Preset			ro			
Subindizes								
0	VAR	Anzahl Einträge	3	Unsigned8	ro			
1	VAR	Mode	х	Unsigned8	rw			
2	VAR	List		Visual string	ro			
3	VAR	Named read		Visual string	wo			

Mode:

- 0 Statisch (STATIC)
- 1 Ausgeglichen (BALANCED)
- 2 Dynamisch (DYNAMIC)

Weitere Einzelheiten dazu finden Sie im Bereich Messeinstellung, siehe A 6.4.2.7.

A 6.4.2.7 Objekt 2022h: Messeinstellung

2022	RECORD	Meassettings			ro					
Subindize	Subindizes									
0	VAR	Anzahl Einträge	7	Unsigned8						
1	VAR	Current		Visual string	ro					
2	VAR	Named read		Visual string	WO					
3	VAR	Named store		Visual string	wo					
4	VAR	Named delete		Visual string	wo					
5	VAR	Initial meassettings		Visual string	rw					
6	VAR	List		Visual string	ro					
7	VAR	Set default		BOOL	wo					

- Current: aktuelle Messeinstellung (MEASSETTINGS CURRENT)

- Named read: Laden einer Messeinstellung aus der \mathtt{List} / Subindex 6 (MEASSET-TINGS READ)
- Named store: Speichern der aktuellen Messeinstellung. Es kann ein Name oder eine Zahl vergeben werden (MEASSETTINGS STORE)
- Named delete: Löschen einer Messeinstellung aus der List / Subindex 6 (MEASSET-TINGS DELETE)
- Initial meassettings: Messeinstellung, die beim Reset des Controllers zuerst geladen wird (MEASSETTINGS INITIAL)
- List: Liste der gespeicherten Messeinstellungen (MEASSETTINGS LIST)
- Set default: Entspricht Kommando SETDEFAULT MEASSETTINGS

Weitere Einzelheiten dazu finden Sie im Bereich Messeinstellungen, siehe A 5.3.8.6.

A 6.4.2.8 Objekt 203Fh: Sensorfehler

203F	RECORD	Sensor error			ro		
Subindizes							
0	VAR	Anzahl Einträge	2	Unsigned8	ro		
1	VAR	Sensor error number	x	Unsigned16	ro		
2	VAR	Sensor error description	x	Visible String	ro		

Weitere Einzelheiten dazu finden Sie im Bereich Fehlermeldungen.

- Sensor error number: Ausgabe des Sensorfehlers bei Kommunikation
- Sensor error description: Sensorfehler als Klartext

A 6.4.2.9 Objekt 2101h: Reset

2101	VAR	Reset	FALSE	BOOL	rw

Der Controller wird neu gestartet.

A 6.4.2.10 Objekt 2105h: Werkseinstellungen

2105 VAR Factory reset BOOL wo

Komplettes zurücksetzen auf Werkseinstellungen. Entspricht dem Kommando SETDE-FAULT ALL.

A 6.4.2.11 Objekt 2107h: Zähler Reset

2107	RECORD	Counter reset			ro	
Subindizes						
0	VAR	Anzahl Einträge	2	Unsigned8	ro	
1	VAR	Reset timestamp		BOOL	wo	
2	VAR	Reset counter		BOOL	wo	

Beim Setzen von Subindex 1 auf 1 wird der Zeitstempel (0x7001) zurückgesetzt und beim Setzen von Subindex 2 auf 1, wird der Messwertzähler (0x7000) zurückgesetzt.

A 6.4.2.12 Objekt 2133h: LED-Lichtquelle Kanal 1

2133 VAR LED on/off ch1 BOOL rw

Ermöglicht das Ein- bzw. Ausschalten der LED-Lichtquelle und entspricht dem Kommando LED. Das Objekt 3133h enthält die LED-Lichtquelle für Kanal 2.

A 6.4.2.13 Objekt 2141h: Videosignal anfordern

2141	RECORD	Video signal			ro		
Subindizes							
0	VAR	Anzahl Einträge	1	Unsigned8	ro		
2	VAR	New frame request		BOOL	WO		

Ist die Ausgabe eines Videosignals aktiviert, entweder für Kanal 1 (0x2142:1) und/oder Kanal 2 (0x3142:1), kann über diesen Eintrag ein neues Bild ausgelöst werden.

A 6.4.2.14 Objekt 2142h: Videosignal freigeben

2142	RECORD	Video signal enable ch1			ro	
Subindizes						
0	VAR	Anzahl Einträge	1	Unsigned8	ro	
1	VAR	Enable dark corrected signal		BOOL	rw	

Ermöglicht die Ausgabe des Videosignals für Kanal 1 in Objekt 0x8000h. Das Objekt 3142h enthält die Videosignalfreigabe für Kanal 2.

A 6.4.2.15 Objekt 2150h: Sensor Kanal 1

2150	RECORD	Sensor ch1			ro		
Subindizes							
0	VAR	Anzahl Einträge	3	Unsigned8	ro		
1	VAR	Sensor info	IFS24xx-xx	Visible String	ro		
2	VAR	Sensor range	XX.XXXXXX	FLOAT32	ro		
3	VAR	Sensor serial No	XXXXXXXX	Visible String	ro		

Weitere Einzelheiten dazu finden Sie im Bereich Sensor, siehe A 5.3.4. Das Objekt 3150h enthält die Sensorinformation für Kanal 2.

A 6.4.2.16 Objekt 2152h: Sensorauswahl Kanal 1

2152	RECORD	Select sensor ch1			ro	
Subindizes						
0	VAR	Anzahl Einträge	1	Unsigned8	ro	
1	VAR	Number of sensor	х	Unsigned8	rw	

Weitere Einzelheiten dazu finden Sie im Bereich Sensor auswählen, siehe A 5.3.4 und Sensornummer, siehe A 5.3.4.2. Das Objekt 3152h enthält die Sensorauswahl für Kanal 2.

A 6.4.2.17 Objekt 2156h: Mehrschichtoptionen Kanal 1

2156	RECORD	Multilayer options ch1			ro
Subinzes					
0	VAR	Anzahl Einträge	2	Unsigned8	ro
1	VAR	Peak count		Unsigned8	rw
2	VAR	Disable refractivity correction	FALSE	BOOL	rw

Enthält die Optionen für die Dicken- und Mehrschichtmessung. Subindex 1 entspricht dem Kommando PEAKCOUNT(_CH0x). Subindex 2 entspricht dem Kommando RE-FRACCORR(CH0x). Das Objekt 3156h enthält die Mehrschichtoptionen für Kanal 2.

Disable refractivity correction: Deaktivierung der Brechzahlkorrektur

A 6.4.2.18 Objekt 2161h: Peakauswahl Kanal 1

2161	VAR	Peak position	0	Unsigned8	rw

Der Peak/die Peaks, die im Modus Abstands-/Dickenmessung ausgewertet werden, können über diesen Befehl festgelegt werden.

Standard: erster Peak / erster und zweiter Peak

Um ein nachvollziehbares Messergebnis zu erhalten, sollte die Standardeinstellung nur in dringenden Fällen verändert werden.

Position für Abstandsmessung		Position für Dickenmessung		
0 erster Peak		0	erster und letzter Peak	
1	letzter Peak	1	vorletzter und letzter Peak	
2	erster Peak	2	erster und zweiter Peak	
3	höchster Peak	3	höchster und zweithöchster Peak	

Das Objekt 3161h enthält die Peakauswahl für Kanal 2.

A 6.4.2.19 Objekt 2162h: Peakoptionen Kanal 1

2162	RECORD	Peak options ch1			ro
Subindize	es				
0	VAR	Anzahl Einträge	2	Unsigned8	ro
1	VAR	Min threshold		FLOAT32	rw
2	VAR	Peak modulation		FLOAT32	rw

Min threshold: Erkennungsschwelle Peak, entspricht dem Kommando MIN_THRESHOLD(_CH0x).

Das Objekt 3162h enthält die Peakoptionen für Kanal 2.

A 6.4.2.20 Objekt 2183h: Ausreißerkorrektur Kanal 1

2183	RECORD	Spike correction ch1			ro			
Subindize	Subindizes							
0	VAR	Anzahl Einträge	4	Unsigned8	ro			
1	VAR	Enable		BOOL	rw			
2	VAR	Evaluation length		Unsigned32	rw			
3	VAR	Range		FLOAT32	rw			
4	VAR	Count		Unsigned32	rw			

Weitere Einzelheiten dazu finden Sie auch bei dem Kommando SPIKECORR(_CH0x), siehe A 5.3.11.1. Bei der Aktivierung über Subindex 1 werden für Subindex 2 bis 4 die Default-Werte gesetzt.

Das Objekt 3183h enthält die Ausreißerkorrektur für Kanal 2.

A 6.4.2.21 Objekt 21B0h: Digitale Schnittstellen

21B0	RECORD	Digital interfaces		ro
Subindize	es			

0	VAR	Anzahl Einträge	2	Unsigned8	ro
2	VAR	RS422 baud rate	х	Unsigned32	rw
3	VAR	Ethermode		Unsigned8	rw

Subindex 2 entspricht dem Kommando BAUDRATE. Es sind nur die vorgegebenen Baudraten einstellbar. Subindex 3 entspricht dem Kommando ETHERMODE.

RS422 baud rate: 9600, 115200, 230400, 460800, 691200, 921600, 1500000, 2000000, 3500000, 4000000

Ethercat-Ethernet: (Wechsel der Schnittstelle)

0 - Ethernet (wirkt erst ab Neustart, vorher Basicsettings store)

1 - EtherCAT

A 6.4.2.22 Objekt 21B1h: Auswahl Schnittstelle

21B1	RECORD	Enable output			ro
Subindize	es				
0	VAR	Anzahl Einträge	3	Unsigned8	ro
1	VAR	RS422	х	BOOL	rw
3	VAR	Analog out		BOOL	rw
4	VAR	Switching outputs		BOOL	rw

Entspricht dem Kommando OUTPUT. Es kann die parallele Ausgabe von Messwerten über die jeweilige Schnittstelle ein- und ausgeschaltet werden.

A 6.4.2.23 Objekt 21C0h: Ethernet

Objekt 21C0h: Ethernet

VAR

VAR

21C0	RECORD	Ethernet			ro
Subindize	es				
0	VAR	Anzahl Einträge	4	Unsigned8	ro
1	VAR	IP address	XXX.XXX.XXX.XXX	Visible String	rw
2	VAR	Subnet mask	xxx.xxx.xxx.xxx	Visible String	rw

XXX.XXX.XXX.XXX

FALSE

Visible String rw

rw

BOOL

Weitere Einzelheiten dazu finden Sie im Bereich Ethernet IP-Einstellungen, siehe A 5.3.7.1.

DHCP:

3

4

0 - Statische IP-Adresse

1 - DHCP

A 6.4.2.24 Objekt 21D0h: Analogausgang

Gateway

DHCP

21D0	RECORD	Analog output			ro			
Subindize	Subindizes							
0	VAR	Anzahl Einträge	6	Unsigned8	ro			
1	VAR	Analog output	х	Unsigned8	rw			
2	VAR	Signal	х	Visible String	rw			
3	VAR	Available signals		Visible String	ro			
4	VAR	Type of scaling	х	Unsigned8	rw			
5	VAR	Two-point-scaling start	X.X	FLOAT32	rw			
6	VAR	Two-point-scaling end	x.x	FLOAT32	rw			

Weitere Einzelheiten dazu finden Sie im Bereich Analogausgang, siehe A 5.3.15.

Analog output:

- 0 Spannung 0 ... 5 V
- 1 Spannung 0 ... 10 V
- 7 Strom 4 ... 20 mA

Signal: Datenauswahl nur entsprechend des gewählten Messprogramms möglich - Bei Abstandsmessung nur Distance 1.

Es kann z. B. 01DIST1 ausgewählt werden. In Available signals sind die zur Verfügung stehenden Signale aufgelistet.

Type of scaling:

- 0 Standard Skalierung
- 1 Zwei-Punkt Skalierung

A 6.4.2.25 Objekt 21F3h: Schaltausgang 1

21F3	RECORD	Analog output			ro				
Subindize	Subindizes								
0	VAR	Anzahl Einträge	7	Unsigned8	ro				
1	VAR	Output level		Unsigned8	rw				
2	VAR	Error out		Unsigned8	rw				
3	VAR	Limit signal		Visible String	rw				
4	VAR	Available signals		Visible String	ro				
5	VAR	Lower limit value		FLOAT32	rw				
6	VAR	Upper limit value		FLOAT32	rw				
7	VAR	Compare to		Unsigned8	rw				

Weitere Einzelheiten dazu finden Sie im Bereich Schaltausgang, siehe A 5.3.14. Output level:

- 0 PNP
- 1 NPN
- 2 Push-pull
- 3 Push-pull negiert

Error out:

- 1 01ER1
- 2 01ER2
- 3 01ER12
- 4 02ER1
- 5 02ER2
- 6 02ER12
- 7 0102ER12
- 8 ERRORLIMIT

Über Limit signal wird ein Messwert-Signal ausgewählt, das für den Vergleich herangezogen wird.

Available signals enthält eine Liste der verfügbaren Signale.

Compare to:

- 1 Lower
- 2 Upper
- 3 Both

Das Objekt 21F4h enthält die Einstellungen für den Schaltausgang 2.

A 6.4.2.26 Objekt 2250h: Belichtungsmodus Kanal 1

2250	RECORD	Shutter mode ch1			
Subindiz	es				
0	VAR	Anzahl der Einträge	3	Unsigned8	ro
1	VAR	Shutter mode	x	Unsigned8	rw
3	VAR	Shutter time 1	x.xx	FLOAT32	rw
4	VAR	Shutter time 2	X.XX	FLOAT32	rw

Weitere Einzelheiten dazu finden Sie im Bereich Belichtungsmodus, siehe 6.2.6, Belichtungsmode, siehe A 5.3.9.4, und Belichtungszeit, siehe A 5.3.9.6.

Shutter mode:

- 1 Messmodus
- 2 Manueller Modus
- 3 Zwei-Zeitenmodus alternierend
- 4 Zwei-Zeitenmodus automatisch

Das Objekt 3250h enthält die Belichtungseinstellungen für den Kanal 2.

A 6.4.2.27 Objekt 2251h: Messrate

2251	RECORD	Measuring rate	FLOAT32	rw
		modeling	I LO/ NOL	

Weitere Einzelheiten dazu finden Sie im Bereich Messrate, siehe A 5.3.9.5.

A 6.4.2.28 Objekt 24A0h: Keylock

24A0	RECORD	Keylock			ro	
Subindizes						
0	VAR	Anzahl Einträge	2	Unsigned8	ro	
1	VAR	Mode	0	Unsigned8	rw	
2	VAR	Delay	0	Unsigned16	rw	

Weitere Einzelheiten dazu finden Sie im Bereich Keylock, siehe A 5.3.16.3.

Mode:

- 0 Inaktiv
- 1 Aktiv
- 2 Automatikmodus / Aktiv nach Verzögerung

A 6.4.2.29 Objekt 24A2h: Taster Multifunction

24A2	RECORD	Keyfunc			ro				
Subindizes									
0	VAR	Anzahl Einträge	4	Unsigned8	ro				
1	VAR	Function 1	0	Unsigned8	rw				
2	VAR	Function 2	0	Unsigned8	rw				
3	VAR	Signals for key mastering	??	Visible string	rw				
4	VAR	Available signals	??	Visible string	ro				

Function 1 und 2:

- 0 Taste ohne Funktion
- 1 Auslösen eines Dunkelabgleichs
- 2 Mastern
- 3 Ein- und Ausschalten der Lichtquelle

Subindex 2 Entspricht im KEYFUNC Kommando dem "signal". Beim Mastern über die Taste (Function == 2) dann wird über diesen Eintrag eingestellt welches Signal gemastert werden soll.

25A0	RECORD	Encoder			ro		
Subindizes							
0	VAR	Anzahl Einträge	10	Unsigned8	ro		
1	VAR	Encoder 1 reference signal	x	Unsigned8	rw		
2	VAR	Encoder 1 interpolation	x	Unsigned8	rw		
3	VAR	Encoder 1 initial value	x	Unsigned32	rw		
4	VAR	Encoder 1 maximal value	x	Unsigned32	rw		
5	VAR	Encoder 1 set value	FALSE	BOOL	wo		
6	VAR	Encoder 2 reference signal	x	Unsigned8	rw		
7	VAR	Encoder 2 interpolation	x	Unsigned8	rw		
8	VAR	Encoder 2 initial value	x	Unsigned32	rw		
9	VAR	Encoder 2 maximal value	x	Unsigned32	rw		
10	VAR	Encoder 2 set value	FALSE	BOOL	wo		

A 6.4.2.30 Objekt 25A0h: Encoder

Weitere Einzelheiten dazu finden Sie im Bereich Encodereingänge, siehe 6.1.2 und Encoder, siehe A 5.3.6.

Encoder reference signal:

- 0 None, Referenzmarke des Encoders ohne Wirkung
- 1 One, einmaliges Setzen
- 3 Ever, setzen bei allen Marken

Encoder interpolation:

- 1 Einfache Interpolation
- 2 Zweifache Interpolation
- 3 Vierfache Interpolation

Encoder initial value:

0 ... 2³²-1

Encoder maximal value:

0 ... 2³²-1

A 6.4.2.31 Objekt 2711h: Maskierung des Auswertebereiches Kanal 1

2711	RECORD	Range of interest ch1				
Subindizes						

0	VAR	Anzahl Einträge	2	Unsigned8	ro
1	VAR	Range of interest start	х	Unsigned16	rw
2	VAR	Range of interest end	x	Unsigned16	rw

Weitere Einzelheiten dazu finden Sie im Bereich Maskierung Auswertebereich, siehe 6.2.4, siehe A 5.3.9.7.

Das Objekt 3711h enthält den Auswertebereich für den Kanal 2.

Г

A 6.4.2.32 Objekt 2800h: Materialinformation

2800	RECORD	Material info and edit							
Subindizes									
0	VAR	Anzahl Einträge	7	Unsigned8	ro				
1	VAR	Material name	XXXXX	Visible String	rw				
2	VAR	Material description	XXXXXX	Visible String	rw				
3	VAR	Type of refraction numbers	хх	Uint8	rw				
4	VAR	nd	x.xxxx	FLOAT32	rw				
5	VAR	nF	x.xxxx	FLOAT32	rw				
6	VAR	nC	x.xxxx	FLOAT32	rw				
7	VAR	Abbe number	x.xxxx	FLOAT32	rw				

Weitere Einzelheiten dazu finden Sie im Bereich Materialdatenbank, siehe 6.2.9, siehe A 5.3.10.

Material name: Aktuell gewähltes Material für eine Dickenmessung

Material description: Beschreibung des aktuell gewählten Materials

nd, nf und nC: Brechzahlen des aktuell gewählten Materials bei 587 nm, 486 nm und 656 nm

Abbe number: Abbe-Zahl des aktuell gewählten Materials

Hier kann das aktuelle Material im Expertenmodus auch editiert werden. Vorgenommene Einstellungen werden sofort gespeichert.

A 6.4.2.33 Objekt 2802h: Materialtabelle bearbeiten

2802	RECORD	Material table edit					
Subindizes							
0	VAR	Anzahl Einträge	4	Unsigned8	ro		
1	VAR	Material delete	x	Visible String	wo		
2	VAR	Reset materials	x	BOOL	WO		
3	VAR	New material	x	BOOL	WO		
4	VAR	Select material for edit		Visible String	wo		

Material delete: Angabe des Namens eines aus der Materialtabelle zu löschenden Materials

Reset Materials: Rücksetzen der Materialtabelle auf Werkseinstellungen

New material: Anlegen eines neuen Materials in der Materialtabelle. Anschließend ist das neu angelegte Material ("NewMaterial") im Objekt 2800h "Material info" zu editieren. Subindex 4 wählt das Material aus, das in Objekt 0x2800 editiert werden soll.

A 6.4.2.34 Objekt 2803h: Vorhandene Materialien

2803	RECORD	Material table					
Subindizes							
0	VAR	Anzahl Einträge	1	Unsigned8	ro		
1	VAR	Material name list	"xx" "xx"	Visible String	ro		

Stellt eine Liste mit allen verfügbaren Materialien bereit.

2804	RECORD	Material selection ch1						
Subindizes								
0	VAR	Anzahl Einträge	5	Unsigned8	ro			
1	VAR	Material 1	XX	Visible String	rw			
2	VAR	Material 2	XX	Visible String	rw			
3	VAR	Material 3	XX	Visible String	rw			
4	VAR	Material 4	XX	Visible String	rw			
5	VAR	Material 5	xx	Visible String	rw			

A 6.4.2.35 Objekt 2804h: Material auswählen Kanal 1

Material 1 bis 5:

Angabe des Materials zwischen den Distance 1 - 2, 2 - 3, 3 - 4, 4 - 5 und 5 - 6. Das gewählte Material muss in der Materialtabelle vorhanden sein.

Das Objekt 3804h enthält die Mateialauswahl für den Kanal 2.

A 6.4.2.36 Objekt 2A00h: Mastern

	2A00	RECORD	Master 1						
Subindizes									
	0	VAR	Anzahl Einträge	5	Unsigned8	ro			
	1	VAR	Enable	xx	BOOL	rw			
	2	VAR	Signal	xx	Visible String	rw			
	3	VAR	Available signals	xx	Visible String	ro			
	4	VAR	Set/reset	xx	BOOL	rw			
	5	VAR	Value	xx	FLOAT32	rw			

Mastern oder Nullsetzen eines Signals; es gibt 10 solcher Objekte (2A00h bis 2A09h). Verweis auf das Kommando MASTERSIGNAL. In Subindex wird angegeben welches Signal gemastert werden soll. Subindex 3 entspricht dem Kommando META_MASTERSI-GNAL. Subindex 4 entspricht dem Kommando MASTER.

A 6.4.2.37 Objekt 2A10h: Statistik

2A10	RECORD	Statistic 1							
Subindizes									
0	VAR	Anzahl Einträge	6	Unsigned8	ro				
1	VAR	Enable		BOOL	rw				
2	VAR	Signal		Visible String	rw				
3	VAR	Available signals		Visible String	ro				
4	VAR	Infinite		BOOL	rw				
5	VAR	Depth		Unsigned32	rw				
6	VAR	Reset		BOOL	rw				

Die Objekte 2A10h bis 2A19h generieren 10 Statistik-Signale.

Subindex 3 entspricht dem Kommando META_STATISTICSIGNAL.

Subindex 6 entspricht dem Kommando STATISTIC.

Für jedes aktivierte Statistic-Objekt werden 3 Signale erzeugt, diese werden in Objekt 0x2E00 aufgelistet. Die Statistikfunktion kann auch auf ein User-Signal angewendet werden.

Beispiel: Von Abstand 1 (Kanal 1) soll über alle vergangenen Abstandswerte der minimale und der maximale Messwert ausgeben werden.

- Aktivierung eines Statistik-Objekts 2A10:01 (Enable) auf TRUE. Per Default wird dann schon der Abstand 1 (01DIST1) als Signal ausgewählt. Wünscht man sich von einem anderen Signal die Statistik, müsste in Subindex 2 noch das gewünschte Signal ausgewählt werden.
- Einstellung für alle vergangenen Abstandswerte 2A10:04 (Infinite) auf True (STATISTICSIGNAL – INFINITE)

Zuordnung von benutzerdefiniertem Signal zu PDO

Ė

In Objekt 0x2E00h tauchen die neu erzeugten Signalnamen auf:

-				-	-			
2E00:0	User calc	RO	> 60 <					
2E00:01	User calc 01	RO	01DIST1_MIN 🗕					
2E00:02	User calc 02	RO	01DIST1_PEAK		+ 7C00:0	UserCalcOutput01	RO	>1<
2E00:03	User calc 03	RO	01DIST1_MAX -		+ 7C01:0	UserCalcOutput02	RO	>1<
2E00:04	User calc 04	RO			± 7C02:0	UserCalcOutput03	RO	>1<
2E00:05	User calc 05	RO			+ 7C03:0	UserCalcOutput04	RO	>1<
2E00:06	User calc 06	RO			± 7C04:0	UserCalcOutput05	RO	>1<
2E00:07	User calc 07	RO			+ 7C05:0	UserCalcOutput06	RO	>1<
2E00:08	User calc 08	RO			+ 7C06:0	UserCalcOutput07	RO	>1<
2E00:09	User calc 09	RO			+ 7C07:0	UserCalcOutput08	RO	>1<
2E00:0A	User calc 10	RO			+ 7C08:0	UserCalcOutput09	RO	>1<
					+ 7C09:0	UserCalcOutput 10	RO	>1<

Der minimale Abstand wird in 0x7C00h und der maximale wird in 0x7C02h ausgegeben.

PDO Auswählen

UserCalcOutput01 – 0x7C00h wird mit Objekt 1B00h ausgewählt und 0x7C02h wird mit Objekt 1B10h ausgegeben

1B00	UserCalc01 TxPDOMap				
	UserCalcOutput01	0x7C00			
1B08	UserCalc02 TxPDOMap				
	UserCalcOutput02	0x7C01			
1B10	UserCalc03 TxPDO	Мар	Δ		
	UserCalcOutput03	0x7C02	S		

Ausschnitt aus TxPDO Mapping, siehe A 6.4.1.7

Vor dem PreOp zu SafeOp muss also in 0x1C13h, 0x1B00h und 0x1B10h ausgewählt werden:

0x00 (0)1B00	clear sm pdos (0x1C13)
0x1B00 (6912)	download pdo 0x1C13:01 index
0x1B10 (6928)	download pdo 0x1C13:02 index
0x02 (2)	download pdo 0x1C13 count

2C00	RECORD	Comp y ch1						
Subindize	Subindizes							
0	VAR	Anzahl Einträge	8	Unsigned8	ro			
1	VAR	Туре		Unsigned16	rw			
2	VAR	Name1		Visible String	rw			
4	VAR	Signal1		Visible String	rw			
5	VAR	Signal2		Visible String	rw			
12	VAR	Available signals		???	ro			
13	VAR	Factor1		FLOAT32	rw			
14	VAR	Factor2		FLOAT32	rw			
17	VAR	Offset		Integer32	rw			
18	VAR	Param1		Unsigned32	rw			

A 6.4.2.38 Objekt 2C00h: Messwertberechnung Kanal 1

Die Objekte 2C00h bis 2C09h generieren 10 Berechnungsmodule für einen Kanal.

Die Objekte 3C00h bis 3C09 enthalten 10 Berechnungsmodule für den Kanal 2.

Die Objekte 2CC0h bis 2CC9 h enthalten 10 Berechnungsmodule für Verrechnungen von Signalen beider Kanäle (nur IFC2422 / IFC2466).

Type:

- 1 Gleitender Mittelwert (MOVING)
- 2 Rekursiver Mittelwert (RECURSIVE)
- 3 Median (MEDIAN)
- 4 Calc / Verrechnung zweier Signale (CALC)

Sobald der Type geändert wird, werden für den ausgewählten Typ Default-Einstellungen geladen. Es können nur Signale aus dem entsprechenden Kanal ausgewählt werden. In Abhängigkeit vom Typ haben alle weiteren Objekteinträge unterschiedliche Bedeutungen:

- Gleitender Mittelwert (MOVING):

4	Signal1	Signal auf das das Filter angewendet werden soll (default ch x: 0xDIST1)
18	Param1	Mittelungszahl (default ch x: 2)

Wertebereich für Param1: 2|4|8|16|32|64|128|256|512|1024|2048|4096

- Rekursiver Mittelwert (RECURSIVE):

4	Signal1	Signal auf das das Filter angewendet werden soll (default ch x: 0xDIST1)			
18	Param1	Mittelungszahl (default ch x: 2)			
Wartsharsish für Davard (0. 0000					

Wertebereich für Param1: 2 ... 32000

- Median (MEDIAN)

4	Signal1	Signal auf das das Filter angewendet werden soll (default ch x: 0xDIST1)			
18	Param1	Mittelungszahl (default chx/sys: 3)			
North project für Devend (0151710					

Wertebereich für Param1: 3|5|7|9

- Calc / Verrechnung zweier Signale (CALC)

2	Name	Name es erzeugten Signals
4	Signal1	(default ch x: 0xDIST1, default sys: 01DIST1)
5	Signal2	(default ch x: 0xDIST2, default sys: 02DIST1)
13	Factor1	(default chx/sys: -1.0)
14	Factor2	(default chx/sys: 1.0)
18	Offset	(default chx/sys: 0.0)

(<factor1> * <signal1>) + (<factor2> * <signal2>) + <offset>

Wertebereich für Offset (mm): -2147,0 ... 2147,0

- Der Objekt-Index bestimmt die Reihenfolge der Bearbeitung und entspricht dem 1
- Parameter ID des ASCII-Kommandos.

Beispiel: Das Signal 01DIST1 soll mit einem Medianfilter und einem Mittelwertfilter gefiltert werden; Reihenfolge ist Medianfilter, dann Mittelwertfilter. 0x2C00:

1	Туре	3 (Median)
4	Signal1	01DIST1
18	Param1	<mittelungszahl></mittelungszahl>

0x2C01:

1	Туре	2 (Rekursiver Mittelwert)
4	Signal1	01DIST1
18	Param1	<mittelungszahl></mittelungszahl>

Filter können auch auf User-Signale angewendet werden.

A 6.4.2.39 Objekt 2CBFh: Sys Signals

2CBF	RECORD	Sys signals					
Subindizes							
0	VAR	Anzahl Einträge	2	Unsigned8	ro		
1	VAR	Range lower		FLOAT32	rw		
2	VAR	Range upper		FLOAT32	rw		

Verweis auf das Kommando SYSSIGNALRANGE.

A 6.4.2.40 Objekt 2E00: Benutzersignale

2E00	RECORD	User calc							
Subindize	Subindizes								
0	VAR	Anzahl Einträge	60	Unsigned8	ro				
1	VAR	User calc 01		Visible String	ro				
2	VAR	User calc 02		Visible String	ro				
3C	VAR	User calc 60		Visible String	ro				

Namen der Benutzer-Signale, die in den Objekten 0x7C0xh ausgegeben werden. Die Reihenfolge gibt die Reihenfolge der PDO-Daten vor. Die Auswahl der PDOs erfolgt über die Objekte 0x1B0xh.

A 6.5 Mappable Objects - Prozessdaten

Stellt alle einzeln verfügbaren Prozessdaten dar.

Die Objekte 0x600x, 0x680x, 0x700x und 0x7C0x sind wie folgt aufgebaut:

[INDEX]		[NAME]			
	0	Subindex 0	Uint8	READ	1 (fix)
	1	Subindex 1	[DATENTYP]	READ	-

Tabelle 3

Objekte 0x6000: Prozessdaten von Kanal 1.

Objekte 0x6800: Prozessdaten von Kanal 2, nur bei IFC2422 / IFC2466 verfügbar. Objekte 0x7000: System Prozessdaten (Prozessdaten, die nicht pro Kanal verfügbar sind).

Objekte 0x7C00: Berechnete Prozessdaten.

Die Namen der Objekte sind an die Namen der möglichen Parameter für das Kommando OUT_ETH angelehnt.

- Nach dem Einschalten sind die Prozessdaten über die Objekte noch nicht verfüg-
- bar. Erst nach einem erfolgreichen Statuswechsel von PreOP zu SafeOP sind die Prozessdaten verfügbar, die über Objekt 0x1C13h bzw. die Mapping-Objekte für die PDO-Ausgabe ausgewählt wurden. Bei einem Statuswechsel von SafeOP zu OP sind alle zuvor ausgewählten Prozessdaten immer noch verfügbar.

CH0x: Kanal/Sensor x; $x = \{1, 2\}$

DISTy: Abstand y;	
$y = \{1, 2,, 6\}$	

INDEX	NAME	INDEX	NAME	[DATENTYP]
6000	CH01DIST1	6800	CH02DIST1	INT32
6001	CH01DIST2	6801	CH02DIST2	INT32
6002	CH01DIST3	6802	CH02DIST3	INT32
6003	CH01DIST4	6803	CH02DIST4	INT32
6004	CH01DIST5	6804	CH02DIST5	INT32
6005	CH01DIST6	6805	CH02DIST6	INT32
6010	CH01INTENSITY1	6810	CH02INTENSITY1	UINT32
6011	CH01INTENSITY2	6811	CH02INTENSITY2	UINT32
6012	CH01INTENSITY3	6812	CH02INTENSITY3	UINT32
6013	CH01INTENSITY4	6813	CH02INTENSITY4	UINT32
6014	CH01INTENSITY5	6814	CH02INTENSITY5	UINT32
6015	CH01INTENSITY6	6815	CH02INTENSITY6	UINT32
6020	CH01UNLIN1	6820	CH02UNLIN1	UINT32
6021	CH01UNLIN2	6821	CH02UNLIN2	UINT32
6022	CH01UNLIN3	6822	CH02UNLIN3	UINT32
6023	CH01UNLIN4	6823	CH02UNLIN4	UINT32
6024	CH01UNLIN5	6824	CH02UNLIN5	UINT32
6025	CH01UNLIN6	6825	CH02UNLIN6	UINT32
6030	CH01SHUTTER	6830	CH02SHUTTER	UINT32
6050	CH01ENCODER1	6850	CH02ENCODER1	UINT32
6051	CH01ENCODER2	6851	CH02ENCODER2	UINT32
7000	COUNTER			UINT32
7001	TIMESTAMP			UINT32
7002	FREQUENCY			UINT32
7C00	UserCalcOutput01			INT32
7C01	UserCalcOutput02			INT32
7C3B	UserCalcOutput60			INT32

Abb. 97 Mappable Objects

A 6.6 Fehlercodes für SDO-Services

Wird eine SDO-Anforderung negativ bewertet, so wird ein entsprechender Fehlercode im "Abort SDO Transfer Protocol" ausgegeben.

Fehlercode hexadezimal	Bedeutung
0503 0000	Toggle-Bit hat sich nicht geändert.
0504 0000	SDO-Protokoll Timeout abgelaufen
0504 0001	Ungültiges Kommando eingetragen
0504 0005	Nicht genügend Speicher
0601 0000	Zugriff auf Objekt (Parameter) nicht unterstützt.
0601 0001	Leseversuch auf einen "nur schreib Parameter"
0601 0002	Schreibversuch auf einen "nur lese Parameter"
0602 0000	Objekt (Parameter) ist nicht im Objektverzeichnis aufgeführt.
0604 0041	Objekt (Parameter) ist nicht auf PDO abbildbar.
0604 0042	Anzahl oder Länge der zu übertragenden Objekte überschreitet PDO- Länge
0604 0043	Allgemeine Parameterinkompatibilität
0604 0047	Allgemeine interne Geräte-Inkompatibilität
0606 0000	Zugriff verweigert wegen eines Hardwarefehlers
0607 0010	Falscher Datentyp oder Länge des Service-Parameters stimmt nicht.
0607 0012	Falscher Datentyp oder Länge des Service-Parameters zu groß
0607 0013	Falscher Datentyp oder Länge des Service-Parameters zu klein
0609 0011	Subindex existiert nicht.
0609 0030	Ungültiger Wert des Parameters (nur bei Schreibzugriff)
0609 0031	Wert des Parameters zu groß
0609 0032	Wert des Parameters zu klein
0609 0036	Maximalwert unterschreitet Minimalwert.
0800 0000	Allgemeiner Fehler
0800 0020	Daten können nicht in Anwendung übertragen oder gespeichert werden.
0800 0021	Daten können nicht in Anwendung übertragen oder gespeichert werden, wegen lokaler Steuerung.
0800 0022	Daten können nicht in Anwendung übertragen oder gespeichert werden, wegen Gerätezustand.
0800 0023	Dynamische Generierung des Objektverzeichnisses fehlgeschlagen oder kein Objektverzeichnis verfügbar

A 6.7 Oversampling

Im Betrieb ohne Oversampling wird mit jedem Feldbuszyklus der letzte angefallene Messwertdatensatz zum EtherCAT- Master übertragen, siehe A 6.4.1.7. Für große Feldbuszykluszeiten stehen somit viele Messwertdatensätze nicht zur Verfügung. Mit dem konfigurierbarem Oversampling werden alle (oder auswählbare) Messwertdatensätze gesammelt und beim nächsten Feldbuszyklus gemeinsam zum Master übertragen.

Der Oversampling-Faktor gibt an, wie viele Samples pro Buszyklus übertragen werden. Ein Oversampling-Faktor von z. B. 2 bedeutet, dass pro Buszyklus 2 Samples übertragen werden.

Für das TxPDO-Mapping, siehe Abb. 96, ist der Basisindex der PDO-Map-Objekte mit dem Oversampling-Faktor 1 enthalten. Zur Ermittlung des Indexes für die Auswahl eines anderen Oversampling-Faktors dient folgende Liste:

- Basisindex + 1: Oversampling-Faktor 2
- Basisindex + 2: Oversampling-Faktor 4
- Basisindex + 3: Oversampling-Faktor 8

Es dürfen immer nur Map-Objekte mit gleichem Oversampling Faktor in 0x1C13h ausgewählt werden.

Beispiel:

- Der Feldbus/EtherCAT Master wird mit 1 ms Zykluszeit betrieben weil z.B. die übergeordnete SPS mit 1 ms Zykluszeit betrieben wird. Damit wird dem IFC2421/2422/2465/2466 alle 1 ms ein EtherCAT-Frame zur Abholung der Prozessdaten geschickt. Ist die Messfrequenz im Controller auf 4 kHz eingestellt, muss ein Oversampling von 4 eingestellt werden.
- Startup-Prozedur um Abstand 1 von Kanal 1 (01DIST1) und Abstand 2 von Kanal 1 (01DIST2) mit einem Oversampling-Faktor von 4 auszugeben.
 - Setzen Sie das Objekt Peak count 2156:01h auf 2, um zwei Abstände zu erhalten.
 - Abstand 1 von Kanal 1 wird in Objekt 6000h ausgegeben. Um dieses Objekt im PDO zu übertragen, muss in Objekt 0x1C13:01h, PDO-Map-Objekt 0x1A00 ausgewählt werden. Für das 4-Fach Oversampling muss jedoch 0x1A02 (Basisindex 0x1A00 + 2) ausgewählt werden.

😟 ··· 1A01:0	Ch01Dist1 TxPDOMap OV2	RO	>2<
i⊒ - 1A02:0	Ch01Dist1 TxPDOMap OV4	RO	> 4 <
1A02:01	Subindex 001	RO	0x6000:01, 32
1A02:02	Subindex 002	RO	0x6000:01, 32
1A02:03	Subindex 003	RO	0x6000:01, 32
1A02:04	Subindex 004	RO	0x6000:01, 32
🗄 🗆 1A03:0	Ch01Dist1 TxPDOMap OV8	RO	> 8 <

 Abstand 2 von Kanal 1 wird in Objekt 6001h ausgegeben. Um dieses Objekt im PDO zu übertragen muss in Objekt 0x1C13:02h, PDO-Map-Objekt 0x1A10 ausgewählt werden. Für das 4-Fach Oversampling muss jedoch 0x1A12 (Basisindex 0x1A10 + 2) ausgewählt werden.

Um aufgrund der Asynchronität zwischen Masterzyklus und Slavezyklus sicherzustellen, dass keine Samples verloren gehen, sollte die Masterzykluszeit immer kleiner als die Zeit für das Zusammenstellen eines Blockes aus n Samples sein.

Ein ganzer Block wird mit den angegebenen Samples erst der EtherCAT - Seite zur Verfügung gestellt, nachdem alle angegebenen Samples in den Block geschrieben wurden. Ist die Zeit für das Füllen eines Blockes kürzer als die Masterzykluszeit, werden einzelne Blöcke nicht übertragen. Es kann nämlich vorkommen, dass bereits der nächste Block mit Samples gefüllt wird, bevor mit einem Masterzyklus der bereits vorher gefüllte Block abgeholt wird.

Wird die Anzahl der Samples dagegen so groß gewählt, dass die Zeit für das Füllen eines Blockes größer als die Masterzykluszeit wird, wird jeder Block durch einen Masterzyklus abgeholt. Allerdings werden einzelne Blöcke (und somit Samples) doppelt oder mehrfach übertragen. Das kann durch Übertragen des Timestamp oder Valuecounter (siehe Objekt 0x21B0) auf der Masterseite detektiert werden.

A 6.8 Kalkulation

A 6.8.1 Einstellen eines Filters

Die Funktion für ein Mittelwert- oder Median-Filter wurde bereits erläutert, siehe A 6.4.2.38.

A 6.8.2 Dicken-Berechnung

Ablauf für die Ausgabe einer Dicke (Abstand 1 zu Abstand 2) im PDO:

Mit der Verwendung des Preset Single side thickness entfällt Schritt 1 und 2. Zur Aktivierung des Presets muss Single side thickness in Objekt 2012:03h geschrieben werden, siehe A 6.4.2.6. Beachten Sie aber, dass damit auch andere Einstellungen verändert werden.

Schritt 1: Setzen Sie die Anzahl der erwarteten Peaks auf 2.

Ė 2156 <u>:0</u>	Multilayer options ch 1	RO	>2<
<u>2156:01</u>	Peak count	RW	0x02 (2)
2156:02	Disable refractivity correction	RW	FALSE

Schritt 2: Richten Sie die Verrechnung in Objekt 2C00 ein. Sezten Sie dazu den Subindex 1 auf 4h. Der Name für das erzeugte Signal lautet THICK12. Formel für die Berechnung: THICK12 = -1.0 x 01DIST1 + 1.0 x 01DIST2 + 0.0 Die Faktoren und der Offset sind entsprechend einzustellen:

Ė - 2C00:0	Comp 1 ch1	RO	> 25 <
2C00:01	Туре	RW	0x0004 (4)
2C00:02	Name	RW	THICK12
2C00:03	Signal 1	RW	01DIST1
2C00:04	Signal2	RW	01DIST2
2C00:0D	Factor1	RW	-1.000000 (-1.000000e+000)
2C00:0E	Factor2	RW	1.000000 (1.000000e+000)
2C00:17	Offset	RW	0.000000 (0.00000e+000)
2C00:18	Param1	RW	0x0000000 (0)

Schritt 3: Zuordnung von benutzerdefiniertem Signal zu PDO In 2E00h taucht nun der neue Signalname auf (von Subindex 1 an werden alle benutzerdefinierten Signale angezeigt).

E 2E00:0	User calc	RO	> 40 <				
2E00:01	User calc 01	RO	THICK12				
2E00:02	User calc 02	RO		± 7C00:0	UserCalcOutput01	RO	>1<
2E00:03	User calc 03	RO		± 7C01:0	UserCalcOutput02	RO	>1<
2E00:04	User calc 04	RO		± 7C02:0	UserCalcOutput03	RO	>1<
2E00:05	User calc 05	RO		± 7C03:0	UserCalcOutput04	RO	>1<
2E00:06	User calc 06	RO		± 7C04:0	UserCalcOutput05	RO	>1<
2E00:07	User calc 07	RO		± 7C05:0	UserCalcOutput06	RO	>1<
2E00:08	User calc 08	RO		± 7C06:0	UserCalcOutput07	RO	>1<
2E00:09	User calc 09	RO		± 7C07:0	UserCalcOutput08	RO	>1<
2E00:0A	User calc 10	RO		± 7C08:0	UserCalcOutput09	RO	>1<
				÷ 7C09:0	UserCalcOutput10	RO	>1<

Schritt 4: PDO auswählen.

. -----

UserCalcOutput01 - 0x7C00h wird mit 0x1B00h ausgewählt:

1B00 UserCalc01 TxPDOM		lap
	UserCalcOutput01	
	0x7C00	
1000	LicorCole02 TypDOM	an

Vor einem Wechsel von PreOp zu SafeOp muss also in 0x1C13h und 0x1B00h ausgewählt werden:

0x1C13:00	0x00 (0)	clear sm pdos (0x1C13)
0x1C13:01	0x1B00 (6912)	download pdo 0x1C13:01 index
0x1C13:00	0x01 (1)	download pdo 0x1C13 count

A 6.8.3 Kanal Verrechnung

Eine Kanalverrechnung ist nur mit dem Controller IFC2422 / IFC2466 möglich. Es gelten Die Regeln aus der Dicken-Berechnung, siehe A 6.8.2. Die Verrechnung selbst erfolgt allerdings in Objekt 0x2CC0h.

A 6.9 Operational Modes

A 6.9.1 Free Run

Keine Synchronisierung. Ein Update der PDOs erfolgt nach der internen Messrate. Die Messrate wird über das Objekt 0x2251h eingestellt.

Nutzen Sie den Messwert-Zähler in 0x7000h bzw. 0x1AE0h, damit durch die fehlende Synchronisation Messwerte nicht doppelt ausgewertet werden.

A 6.9.2 Distributed Clocks SYNC0 Synchronisierung

Die Messrate wird durch die SYNC0-Zykluszeit vorgegeben. In diesem Modus kann ein EtherCAT Master die Messwertaufnahme zur EtherCAT-Zykluszeit synchronisieren und die Messwertaufnahme mehrere Controller synchronisieren.

In der ESI-XML-Datei sind vordefinierte SYNC0-Zykluszeiten vorhanden. Es kann aber jede beliebige Zykluszeit in den Grenzen von 153846 ns (Messrate = 6,5 kHz; IFC2421/2422) bzw. 33333 ns (Messrate = 30 kHz; IFC2465/2466) bis 10000000 ns (Messrate = 0,1 kHz) eingestellt werden.

A 6.10 Videosignal über SDO

Aktiviert wird die Ausgabe des Videosignals von Kanal 1 über das Objekt 0x2142:1h und die Ausgabe des Videosignals von Kanal 2 über das Objekt 0x3142:1.

Mit jedem Auslösen eines Videobildes über das Objekt 0x2141:2h werden in Objekt 0x8000h (Kanal 1) und 0x8800 (Kanal 2) die Daten des neuen Bildes abgelegt. Die Daten werden als 1024 Byte Octed-String bereitgestellt. Auf der Seite des EtherCAT Masters müssen die Daten als Vektor von 16 Bit vorzeichenlose Integer interpretiert werden.

Die Ausgabe des Videosignals kann parallel zur PDO-Ausgabe von Prozessdaten erfolgen. Die Prozessdaten in den Objekten 0x6000h bis 0x7FFFh werden aber nicht mehr zyklisch aktualisiert sobald eines der Videosignale aktiviert wurde, sondern nur mit dem Auslösen eines Video-Bildes. Damit wird sichergestellt, dass zu jedem Video-Bild der für dieses Bild berechnete Abstandswert zugeordnet werden kann.

A 6.11 Bedeutung der STATUS-LED im EtherCAT-Betrieb

	Grün-Zustand:				
	Grün aus	INIT- Zustand			
	Grün blinkend 2,5 Hz	PRE-OP-Zustand			
	Grün Single Flash, 200 ms ON / 1000 ms OFF	SAFE-OP-Zustand			
	Grün an	OP- Zustand			
Statua I ED	Rot-Störungen (werden in den Pausen der grünen LED angezeigt):				
Status LED	Rot aus	Keine Störung			
	Rot blinkend 2,5 Hz	Ungültige Konfiguration			
	Rot Single Flash, 200 ms ON / 1000 ms OFF	Nicht angeforderte Zu- standsänderung			
	Rot Double Flash, 200 ms ON / 200 ms OFF 200 ms ON 400 ms OFF	Zeitüberschreitung des Watchdog			
	Rot blinkend 10 Hz	Fehler beim Initialisieren			

A 6.12 EtherCAT-Konfiguration mit dem Beckhoff TwinCAT©-Manager

Als EtherCAT-Master auf dem PC kann z.B. der Beckhoff TwinCAT Manager verwendet werden.

- Bevor Sie EtherCAT am Controller nützen können, muss der Controller auf den
- Betrieb mit EtherCAT programmiert sein, siehe A 6.2.

Die Gerätebeschreibungsdatei (EtherCAT®-Slave Information) IFC242x.xml bzw. IFC246x.xml finden Sie online unter www.micro-epsilon.de/download/software/.

- Kopieren Sie die Gerätebeschreibungsdatei in das Verzeichnis C:\TwinCAT\3.1\ Config\Io\EtherCAT, bevor das Messgerät über EtherCAT® konfiguriert werden kann.
- Löschen Sie eventuell vorhandene ältere Dateien.

EtherCAT®-Slave-Informationsdateien sind XML-Dateien, welche die Eigenschaften des Slave-Geräts für den EtherCAT®-Master spezifizieren und Informationen zu den unterstützten Kommunikationsobjekten enthalten.

Starten Sie den TwinCAT-Manager nach dem Kopieren neu.

Suchen eines Gerätes:

- Wählen Sie den Reiter I/O Devices, dann Scan.
- **Bestätigen Sie mit** OK.

File Edit View Project Build Debug TwinCAT TwinSAFE PLC	Tools Scope Window Help
	Number Device Type
 Solution '2122 Nov16' (1 project) 2122 Nov16 SYSTEM MOTION PLC SAFETY C++ 	
	Microsoft Visual Studio
Add New Item Ctrl+Shift+A	HINT: Not all types of devices can be found automatically
Scan	OK Abbrechen
Paste with Links	
Wählen Sie eine Netzwerkkarte aus, ar werden soll. 1 new I/O devices found	e denen nach EtherCAT®-Slaves gesucht
☑ Device 2 (EtherCAT) [Juli 2013 (TwinCAT-Intel PCI Ethernet Adapter (Giga]	■ OK OK .
	Select All Unselect All
Microsoft Visual Studio	Es erscheint das Fenster "Scar for boxes" (EtherCAT®-
Scan for boxes	Slaves).
Ja Nein	Bestätigen Sie mit Ja.

Der confocalDT IFC2421/2422/2465/2466 ist nun in einer Liste aufgeführt.

Bestätigen Sie nun das Fenster Activate Free Run mit Ja.

File Edit View Project Build Debug TwinCAT TwinSAFE PL	Tools Scope Window Help	
	ease 🔹 TwinCAT RT (x64)	- 🖄 🗒
Solution Explorer 🔹 🕂 🗙	2122 Nov16 ×	*
Solution '2122 Nov16' (1 project) Solution '2122 Nov16' (1 project) 2122 Nov16 SYSTEM MOTION PLC SAFETY C	General Adapter EtherCAT Online Name: Device 2 (EtherCAT Object Id: 0x03010020 Type: EtherCAT Master Comment:	a CoE - Online
Image Image	Microsoft Visual Studio	n Create s
▶ 🧌 Box1 (IFC2422)	Number Box Name ?1 Box 1 (IFC2422)	Address Type 1001 IFC2422

Auf der Online Seite sollte der aktuelle Status mindestens auf PREOP, SAFEOP oder OP stehen.

File Edit View Project Build Debug	TwinCAT TwinSAFE P	PLC Tools Scope Wi	ndow Help			
; D * 🖽 * 🖉 🖌 🕼 & 🖷 🖄 🤊 ·	- (C + (四 * 町))	Release • TwinCA	AT RT (x64)	•	≝ =	
Solution Explorer 🛛 👻 🕂 🗙	2122 Nov16 ×					
Solution Explorer Solution '2122 Nov16' (1 project) Solution '2122 Nov16' (1 project) SYSTEM MOTION PLC SAFETY SAFETY C++ DVC C++ Devices Devices Devices	2122 Nov16 × General EtherCAT f State Machine Init Pre-Op Op DLL Status Port A: No C Port B: Came	Process Data Startup Col Bootstrap Cur Safe-Op Rei Clear Error Rei arrier / Closed	E - Online Onlin rent State: quested State:	e OP OP		
image image-Info ▷ ② SyncUnits ▷ Inputs ▷ Outputs ▷ InfoData	Port D: No C Port D: No C File Access over Eth Download	arrier / Closed arrier / Closed ercAT				
Box 1 (IFC2422)		opida				-
WcState	Name	Online	Туре	Size	>Addr	In/Out
⊳ 🛁 InfoData 鞈 Mappings	 Ch01Dist1 Samp WcState InputToggle State AdsAddr 	0x0074ED8B (76629 0 0 15368 10.1.28.211.3.1:1001	Ch01Dist1 BIT BIT UINT AMSADDR	4.0 0.1 0.1 2.0 8.0	26.0 1522.0 1524.0 1548.0 1550.0	Input Input Input Input Input

Falls in Current State ERR PREOP erscheint, wird im Meldungsfenster die Ursache gemeldet. Das wird dann der Fall sein, wenn die Einstellungen für das PDO-Mapping im Controller andere sind, als die Einstellungen in der ESI-Datei (confocalDT24XX.xml).

Im Auslieferungszustand des Messgerätes ist nur ein Messwert (Abstand 1) als Ausgabegröße (sowohl im Controller als auch in der ESI-Datei) eingestellt.

Über den Prozessdaten-Tab können weitere Daten ausgewählt werden.

Der Umfang der angebotenen Prozessdaten und die Zuordnung der SyncManager kann jetzt eingesehen werden.

Wählen Sie nun unter dem Menüpunkt TwinCAT den Reiter Restart TwinCAT (Config Mode).

Die Konfiguration ist nun abgeschlossen.

Im Status SAFEOP und OP werden die ausgewählten Messwerte als Prozessdaten übertragen.

	Name	Online	Туре	Size	>Addr	In/Out	User ID
 Devices Device 2 (EtherCAT) Image Image-Info SyncUnits Inputs Outputs InfoData Max 1 (IFC2422) Ch01Dist1 TxPD WcState 	📽 SubIndex 001	10345664	DINT	4.0	26.0	Input	0

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 · 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de · www.micro-epsilon.de Your local contact: www.micro-epsilon.com/contact/worldwide/

X9750367-B032074HDR © MICRO-EPSILON MESSTECHNIK