

Betriebsanleitung inertialSENSOR INC5502D

INC5502D-360/90-P-S-CO INC5502D-360/90-P-OS-CO INC5502D-360/90-P-DS-CO INC5502D-360/90-P-S-J1939 INC5502D-360/90-P-OS-J1939 INC5502D-360/90-P-DS-J1939 Neigungssensor

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15

94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.de

Inhalt

1.	Sicherhe	it	
11	Verwendet	te Zeichen	5
12	Warnhinw		5
1.2	Hinweise	zur CE-Kennzeichnung	
1.0	Bostimmu		
1.4	Bostimmu	ngsgemäbe verwendung	
1.5	Destimitu	ngsgemabes onneid	0
ົ	Funktion	sprinzin Tachnischa Datan	7
2. 01	Kurzbesch	spinizip, rechinische Daten	7
2.1	Magaprinz	in elburg	
2.2	Figonocho	IP	
2.3	Eigenscha		
2.4	rechnisch	e Daten	8
•	Lisfamura	_	
3.	Lieferung	g	
3.1	Lieferumfa	ing	
3.2	Lagerung.		11
-			
4.	Installati	on und Montage	12
4.1	Hinweise f	ür den Betrieb	
4.2	Sensorkat)el	12
4.3	Mechaniso	che Befestigung, Maßzeichnung	
	4.3.1	Maßzeichnung INC5502D-360/90-P-OS	
	4.3.2	Maßzeichnung INC5502D-360/90-P-DS-CO	
	4.3.3	Maßzeichnung INC5502D-360/90-P-S-CO	
4.4	Koordinate	ensystem	14
	4.4.1	Eulerwinkel und Nullsetzen	14
	4.4.2	Positionswinkel Tilt und Nullsetzen	
4.5	Anschluss	belegung	
4.6	Status-LEI		
4.7	Wechsel d	les Betriebsmodus	
	471	CAN-Modus (J1939 oder CANopen) zu BS485-Modus	20
	472	BS485-Modus (JCAN-Modus (J1939 der CANopen)	20
48	Finstellnar	rameter des Sensors	21
1.0	Enotonpa		
5	CANope	n Schnittstelle	23
5.1	Funktionsi	il bersicht	23
52	Positioniar	rung von CANopen im Schichtenmodell	20
53	Gerätemo	dal	
5.5 5.4	Kommunik	vetionsspozifische Standard Objekte	
5.4	Objektvor		
5.5		2010 mills	
	5.5.1	Zugrin auf Parameter dater per Service-Dater-Objekt (SDO)	
	5.5.2	Norminul invations paralitie ter nach Cha DS-Soft	
	5.5.3		
	5.5.4	Kommunikationsparameter nach CIA DS-410	
	5.5.5	LSS-Dienste	
		5.5.5.1 Bitrate andern	
	0	5.5.5.2 Node-ID andern	
	5.5.6	Parametrisierung des Sensors	
5.6	Prozessda	itenobjekte: PDO (IXPD01 - IXPD04)	
		5.6.6.1 Synchronisiertes Senden	
		5.6.6.2 Zyklisches Senden	
5.7	Fehlermel	dungen - EMCY-Codes	35
	5.7.1	Fehlerbehandlung	
	5.7.2	Herstellerstatusregister	
	5.7.3	Herstellerspezifische Fehlercodes	
_			
6.	SAE J19	39 Schnittstelle	38
6.1	Grundlage	n - Nachrichtenformat	
6.2	Kommunik	(ationsmöglichkeiten	
	6.2.1	Zielgerichtete Kommunikation	
	6.2.2	Rundrufkommunikation	
	6.2.3	Proprietäre Kommunikation	
6.3	Nachrichte	entypen	
	6.3.1	Request	
	6.3.2	Proprietäres PGN	40
6.4	Gerätenan	ne und Defaultadresse	40
6.5	Prozessda	atenübersicht (Transmit PGNs)	41
6.6	Konfigurat	ion des SAE J1939 Interfaces	
	6.6.1	Parameterwert mittels einer ID lesen	43
	6.6.2	Parameterwert mittels einer ID schreiben	
		6.6.2.1 Zahlenwerte bis Datentvooröße 32 Bit oder Strings bis zu einer maximalen I	ände von
		5 Zeichen 44	
		6.6.2.2 Strings bis zu einer Länge von 64 Zeichen	45
	6.6.3	Einstellen der Bitrate	
	6.6.4	Neustart des Sensors	
	6.6.5	An-/ Abwählen von zyklisch gesendeter Prozessdaten	46
	6.6.6	Fehler-Antworttelegramme	

7.	Betrieb	48
8.	Haftungsausschluss	49
9.	Service, Reparatur	49
10.	Außerbetriebnahme, Entsorgung	50
Anhang		
A 1	Optionales Zubehör	51
A 2	Werkseinstellung	51
A 3 A 3.1	Software sensorTOOL	51 52 52 53 54 54
A 3.2 A 3.3	Menü Einzelwert Menü Einstellungen A 3.3.1 Signalverarbeitung	55 55 55

1. Sicherheit

Die Systemhandhabung setzt die Kenntnis der Betriebsanleitung voraus.

1.1 Verwendete Zeichen

In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet:

 Image: Construction
 Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verletzungen führt, falls diese nicht vermieden wird.

 Image: Construction of the structure of the st

1.2 Warnhinweise

Schließen Sie die Spannungsversorgung nach den Sicherheitsvorschriften für elektrische Betriebsmittel an.

- > Verletzungsgefahr
- > Beschädigung oder Zerstörung des Sensors und des Controllers

HINWEIS

Vermeiden Sie Stöße und Schläge auf den Sensor. > Beschädigung oder Zerstörung des Sensors und des Controllers

Die Versorgungsspannung darf angegebene Grenzen nicht überschreiten.

> Beschädigung oder Zerstörung des Sensors und des Controllers

Auf die Kabel dürfen keine scharfkantigen oder schweren Gegenstände einwirken. Vermeiden Sie ein Knicken der Kabel. Unterschreiten Sie den Mindestbiegeradius der Kabel nicht.

- > Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes
- Quetschen Sie die Kabel nicht. Schützen Sie die Kabel vor Beschädigung.
- > Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes, Datenverlust

Stellen Sie sicher, dass die Überwurfmuttern der Stecker fest angezogen sind.

> Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes

1.3 Hinweise zur CE-Kennzeichnung

Für den inertialSENSOR INC5502D gilt:

- EU-Richtlinie 2014/30/EU
- EU-Richtlinie 2011/65/EU

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und der jeweils anwendbaren harmonisierten europäischen Normen (EN). Das Messsystem ist ausgelegt für den Einsatz im Industriebereich.

Die EU-Konformitätserklärung und die technischen Unterlagen werden gemäß den EU-Richtlinien für die zuständigen Behörden bereit gehalten.

1.4 Bestimmungsgemäße Verwendung

- Der inertialSENSOR INC5502D ist für den Einsatz im Industriebereich konzipiert. Es wird eingesetzt zur
 - Messung von Winkeln
 - Bestimmung der Ausrichtung von Maschinenteilen
 - Positionserfassung von beweglichen Komponenten
- Das System darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe 2.
- Das System ist so einzusetzen, dass bei Fehlfunktionen oder Totalausfall des Systems keine Personen gefährdet oder Maschinen und andere materielle Güter beschädigt werden.
- Bei sicherheitsbezogener Anwendung sind zusätzlich Vorkehrungen für die Sicherheit und zur Schadensverhütung zu treffen.

1.5 Bestimmungsgemäßes Umfeld

- Schutzart: IP67/IP69K
- Temperaturbereich:
 - Betrieb: -40 ... +85 °C
 - ■Lagerung: -40 ... +85 °C
- Luftfeuchtigkeit: 5 ... 95 % (nicht kondensierend)
- Umgebungsdruck: Atmosphärendruck

2. Funktionsprinzip, Technische Daten

2.1 Kurzbeschreibung

Der inertialSENSOR INC5502D ist ein Neigungssensor für die ein- oder zweiachsige Messung von Neigungswinkeln mit einem dynamisch stabilisierten SensorFUSION-Filter, der die Sensorik eines Beschleunigungssensors und eines Gyroskops kombiniert.

Dadurch wird ein stabiles Ausgangssignal mit nahezu keinem Zeitverzug auch bei dynamischen Bewegungen erzielt. Der Sensor wird in mobilen Maschinen, wie land- und forstwirtschaftlichen Maschinen sowie Baumaschinen und in der Kran- und Hebetechnik eingesetzt.

2.2 Messprinzip

Das Signal ist selbst bei starken Störungen durch z. B. Vibrationen und Stöße zuverlässig und stabil. Optional steht auch ein Tiefpassfilter mit kritisch gedämpfter Charakteristik (kein Überschwingen der Sprungantwort) zur Verfügung.

Der Sensor verfügt über folgende Ausgangssignale, die beliebig aktiviert werden können:

- Eulerwinkel Longitudinal (Roll), Messbereich wahlweise ±180° oder 0° ... 360° und Eulerwinkel Lateral (Pitch), Messbereich ±85° oder 95° ... 265°; Vorzeichen umkehrbar, Achsausrichtung wählbar, siehe 4.4.1.
- Positionswinkel Tilt x und Tilt y, Messbereich ±90°; Verkippung der Achsen zur horizontalen Ebene im Schwerefeld der Erde, Vorzeichen umkehrbar, Achsausrichtung wählbar, siehe 4.4.2.
- Beschleunigung Achsen x, y, z, Messbereich ±2 g
- Winkelgeschwindigkeit Achsen x, y, z, Messbereich ±500°/s

Auf Anfrage kann über einen Parametersatz die Software auf die jeweilige Anwendung angepasst werden.

Zudem ermöglichen zahlreiche Einstellparameter eine optimale Anpassung an die jeweilige Anwendung.

2.3 Eigenschaften und elektrischer Anschluss

Der Sensor kann für statische als auch dynamische Winkelmessungen angesetzt werden. Für die dynamische Messung während der Bewegung wird der SensorFUSION-Filter verwendet. Für eine quasistatische bzw. statische Messung wird der Tiefpassfilter (kritisch gedämpft) eingesetzt.

Der Neigungssensor ist mit den Schnittstellen SAE J1939 und CANopen erhältlich.

Eine Konfiguration des Sensors ist über beide Schnittstellen möglich, siehe 6.6 (SAE J1939), siehe 5.5.6 (CANopen).

Für die Konfiguration des Sensors ist das Programm sensorTOOL verfügbar und kann kostenfrei von der Website heruntergeladen werden, siehe A 3.

Damit der Sensor mit dem sensorTOOL verbunden werden kann, muss dieser über die SAE J1939 bzw. CANopen Schnittstelle umgestellt werden, siehe 4.7.

2.4 Technische Daten

Modell		INC5502D		
Anzahl Messachsen		1 oder 2		
Einstellbare Filter		sensorFUSION, Tiefpassfilter (kritisch gedämpft)		
Messbereich	Eulerwinkel	Longitudinal (Roll): ±180° (umstellbar auf 0° 360°) Lateral (Pitch): ±85° (umstellbar auf 95° 265°) (Vorzeichen umkehrbar, Achsausrichtung wählbar)		
	Positionswinkel	Tilt x und Tilt y: ±90° (Vorzeichen umkehrbar, Achsausrichtung wählbar)		
Auflösung		0,01°		
Wiederholpräzision		$\leq \pm 0,05^{\circ}$		
Genauigkeit	statisch	$\pm 0,15^{\circ}$ (Messbereich $\leq \pm 30^{\circ}$) $\pm 0,25^{\circ}$ (Messbereich $> \pm 30^{\circ}$)		
	dynamisch	bis zu ±0,3° ¹ (typ. ±0,5°)		
Messrate		200 Hz		
Temperaturstabilität		±0,01° / K		
Versorgungsspannung		9 32 VDC		
Maximale Stromaufnahme		< 50 mA bei 12 VDC; < 25mA bei 24 VDC		
Digitale Schnittstelle		CANopen, SAE J1939		
Anschluss		1 oder 2 x Steckverbinder 5-polig M12 (Stecker-Buchse, durchgeschleift) ²		
Montage		Befestigungsbohrungen Ø 4 mm		
Temperaturbereich	Lagerung	-40 +85 °C		
	Betrieb	-40 +85 °C		
Schock (DIN EN 60068-2-27)		1500 g / 0,5 ms in 3 Achsen		
Schutzart (DIN EN 60529)		IP67 / IP69K		
Sensorausrichtung		horizontal oder vertikal		
Material		glasfaserverstärktes Polyamid (Gehäuse)		
MTTF		330 Jahre		
Bedien- und Anzeigeelement	e	zweifarbige LED für Status		
Gewicht		ca. 120 g		

Alle Angaben sind typisch für 25 °C, sofern nicht anders angegeben.

1) Optimierung der dynamischen Genauigkeit des Sensors durch einen angepassten Parametersatz in Ihrer Serienanwendung auf bis zu ± 0.3 ° möglich.

2) Weitere Anschlussmöglichkeiten auf Anfrage (z.B. integriertes Kabel)

Bestellbezeichnung

INC5502D	-360/90	-P	-0\$	-CO
	Messbereich:	Gehäusematerial:	Steckervariante:	Schnittstelle:
	Longitudinal (Roll): ±180° (umstellbar auf 0° 360°)	Polyamid (glasfaser- verstärkt)	S: Stecker, 5-polig, 1xM12, A-codiert DS: Stecker und Buchse, durchge-	CO: CANopen J1939: SAE1939
	Lateral (Pitch): ±85° (umstellbar auf 95° 265°)		schleift, 5-polig, 2xM12, A-codiert, auf Gehäusevor- der- bzw. rückseite	
	±90° (Vorzeichen umkehrbar, Achsausrichtung wählbar)		OS: Stecker und Buchse durchge- schleift, 5-polig, 2xM12, A-codiert, auf Gehäusevor- derseite	

Störaussendung				
Leitungsgeführte Störaussendung / Funkstörspannung EN55016-2-1	DIN EN 61326-1 MSR (CISPR 11) 0,15 30MHz			
Gestrahlte Störaussendung / Funkfeldstärke EN55016-2-3	DIN EN 61326-1 MSR (CISPR 11) DIN EN ISO 13766-1 (Baumaschinen) (4.5 Broadband ESA 4.6 Narrowband ESA) 30MHz 1GHz (vertikal und horizontal)			
Störfestigkeit gegen elektromagnetische Entladung (ESD)				
Indirekte Kontaktentladung EN 61000-4-2	DIN EN 61326-1 MSR ±6kV Bewertungskriterium B			
Kontaktentladung EN 61000-4-2	DIN EN 61326-1 MSR ±6kV Bewertungskriterium B			
Luftentladung EN 61000-4-2	DIN EN 61326-1 MSR ±8kV Bewertungskriterium B			

Störfestigkeit gegen gestrahlte HF-Felder					
EN 61000-4-3	EN 61326-1 MSR 80 – 1000 MHz 10V/m (RMS cw) 1,0 – 6,0 GHz 3V/m (RMS cw) DIN EN 13766-1 / DIN EN ISO 14982 200 – 1000 MHz 48V/m (modulated) Bewertungskriterium A				
Störfestigkeit gegen schnelle Transienten (Burst)					
EN 61000-4-4	±2kV Bewertungsł	kriterium B			
Störfestigkeit gegen Stoßspannungen (Surge)	'				
EN 61000-4-5 ±1kV Bewertungskriterium					
Störfestigkeit gegen leitungsgeführte HF asymetrisch					
EN 61000-4-6 0,15 – 80MHz 10V (RMS cw) Bewertungskriterium A			gskriterium A		
Störfestigkeit gegen leitungsgeführte Störgrößen (Bord	Störfestigkeit gegen leitungsgeführte Störgrößen (Bordnetz 12 VDC)				
Impulse nach ISO 7637-2	Impuls	Schärfegrad	Kriterium		
	1	III (-75V/0,5s)	С		
	2a	III (+37V/0,2s)	A		
	3a	III (-112/90ms)	А		
	3b	III (+75V/90ms)	A		
	4	III (-6V)	A		
	5a	III (+65V, Ri=4Ω)	A		

Abb. 1 Elektromagnetische Verträglichkeit (EMV)

3. Lieferung

3.1 Lieferumfang

1 Sensor INC5502D

1 Montageanleitung

- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

3.2 Lagerung

Temperaturbereich Lager: -40 ... +85 °C

Luftfeuchtigkeit: 5 ... 95 % RH (nicht kondensierend)

4. Installation und Montage

4.1 Hinweise für den Betrieb

Achten Sie bei Montage und Betrieb auf sorgsame Behandlung.

4.2 Sensorkabel

HINWEIS	Auf die Kabel dürfen keine scharfkantigen oder schweren Gegenstände einwirken. Vermeiden Sie ein Knicken der Kabel. Unterschreiten Sie den Mindestbiegeradius der Kabel nicht. > Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes
HINWEIS	Quetschen Sie die Kabel nicht. Schützen Sie die Kabel vor Beschädigung. > Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes
HINWEIS	Stellen Sie sicher, dass die Überwurfmuttern der Stecker fest angezogen sind. > Beschädigung oder Zerstörung der Kabel, Ausfall des Messgerätes

4.3 Mechanische Befestigung, Maßzeichnung

Befestigen Sie den Sensor mit drei M4 Schrauben.

4.3.1 Maßzeichnung INC5502D-360/90-P-OS

4.3.2 Maßzeichnung INC5502D-360/90-P-DS-CO

4.3.3 Maßzeichnung INC5502D-360/90-P-S-CO

4.4 Koordinatensystem

Nachdem der Sensor montiert ist, kann der Sensor frei eingestellt werden, siehe 4.4.1, siehe 4.4.2.

Von der Nullposition misst der Sensor einen Eulerwinkel Longitudinal (Roll): $\pm 180^{\circ}$ bzw. Eulerwinkel Lateral (Pitch): $\pm 85^{\circ}$ (umstellbar auf 0° ... 360° bzw. 95° ... 265°, Vorzeichen umkehrbar, Achsausrichtung wählbar) oder Positionswinkel Tilt x und Tilt y: $\pm 90^{\circ}$ (Vorzeichen umkehrbar, Achsausrichtung wählbar).

4.4.1 Eulerwinkel und Nullsetzen

Der Eulerwinkel Longitudinal (Roll) gibt die Drehung um die Rotationsachse an. Der Eulerwinkel Lateral (Pitch) gibt die seitliche Verkippung der Rotationsachse an.

Mit dem Parameter IncChooseLoLa (ID 50548), siehe 4.8, kann die Ausrichtung an die Montagesituation angepasst werden.

Abb. 2 Sensorausrichtung: Horizontale Montage x und Auswahl der X-Achse als Rotationsachse

Abb. 3 Sensorausrichtung: Horizontale Montage y und Auswahl der Y-Achse als Rotationsachse

Abb. 4 Sensorausrichtung: Vertikale Montage z und Auswahl der Z-Achse als Rotationsachse

Die Winkelwerte können in der Einbaulage bei dem gewählten Messbereich $\pm 180^{\circ} / \pm 85^{\circ}$ auf 0°, bzw. bei dem gewählten Messbereich 0°...360°/95° ... 265° auf 180° gesetzt werden (Nullsetzen). Somit sind die Winkelwerte in der Einbaulage in der Mitte des Messbereichs. Während des Nullsetzens darf die Rotationsachse bis zu einem Winkel von +-5° verkippt sein. D. h. der Eulerwinkel-Lateral darf während des Nullsetzen einen Winkel von bis zu +- 5° anzeigen.

Setzen Sie den Parameter TeachIn (ID 50081), siehe 4.8, zum Nullsetzen auf 1.

Mit dem Wert 2 wird das Nullsetzen rückgängig gemacht, siehe 5.5.6. (CANopen), siehe 6.6.2 (J1939).

4.4.2 Positionswinkel Tilt und Nullsetzen

Im Gegensatz zu den Eulerwinkeln zeigen die Positionswinkel die Neigung im Schwerefeld der Erde an, d. h. die Verkippung zweier Achsen bezogen auf die globale horizontale Ebene senkrecht zur Gravitation. Mit dem Parameter IncChooseTilt (ID 50549), siehe 4.8, kann die Ausrichtung an die Montagesituation angepasst werden.

Bei vertikaler Montage des Sensors und Auswahl der X-Achse parallel zur Gravitation, wird die Verkippung der Y-Z-Ebene bezogen auf die globale horizontale Ebene gemessen, siehe Abb. 5. Wird die Y-Achse hingegen ausgewählt, wird die Verkippung der X-Z-Ebene auf die globale horizontale Ebene gemessen, siehe Abb. 6. Bei horizontaler Montage des Sensors und Auswahl der Z-Achse parallel zur Gravitation wird die Verkippung der X-Y-Ebene angezeigt, siehe Abb. 7.

Abb. 5 Vertikale Montage und Auswahl der X-Achse parallel zur Gravitation (Messung der Verkippung der Y-Z Ebene)

Abb. 6 Vertikale Montage und Auswahl der Y-Achse parallel zur Gravitation (Messung der Verkippung der X-Z-Ebene)

Abb. 7 Vertikale Montage und Auswahl der Z-Achse parallel zur Gravitation (Messung der Verkippung der X-Y-Ebene)

Die Winkelwerte können in der Einbaulage auf 0° gesetzt werden (Nullsetzen). Während des Nullsetzens ist darauf zu achten, dass der Sensor horizontal ausgerichtet ist.

Setzen Sie den Parameter TeachIn (ID 50081), siehe 4.8, zum Nullsetzen auf 1.

Mit dem Wert 2 wird das Nullsetzen rückgängig gemacht.

Pin	Belegung	Signal	
1	Schirm	CAN_SHLD	
2	Versorgungsspan- nung (9 32 VDC)	V+	
3	GND / 0 V / V-	V-	
4	CAN_H Busleitung	CAN_H	
5	CAN_L Busleitung	CAN_L	5-pol. Gehäusestecker Ansicht Stiftseite A-codiert

4.5 Anschlussbelegung

Abb. 8 Pinbelegung des 5-poligen M12-Steckers CAN-Bus

Pin	Belegung	Signal	
1	Schirm	CAN_SHLD	
2	Versorgungsspannung (9 32 VDC)	V+	
3	GND / 0 V / V-	V-	
4	CAN_H Busleitung	CAN_H	$\begin{pmatrix} O & O_5 & O_5 \end{pmatrix}$
5	CAN_L Busleitung	CAN_L	5-pol. Gehäusebuchse Ansicht Buchsenseite A-codiert

Abb. 9 Pinbelegung der 5-poligen M12-Buchse CAN-Bus

4.6 Status-LED

Allgemein

Die eingebaute Status-LED zeigt den aktuellen Gerätezustand (Betriebs-LED, grün) sowie eventuell eingetretene CAN-Kommunikationsfehler an (Fehler-LED, rot). Anhand der Farbe und Blinkfrequenz werden die dargestellten Zustände unterschieden.

CAN-RUN LED & CAN- ERROR LED	Farbe	Zustand	Beschreibung
	Grün/Rot	abwechselnd flackernd	Initialisierungsphase
		dauerhaft aus	Sensor hat keine Span- nungsversorgung oder ist defekt.

CANopen

CAN-RUN LED	Farbe	Zustand	Beschreibung
	- Grün -	aus	Sensor wird gerade zurückgesetzt oder hat keine Spannungsversor- gung.
		kurzes Blinken	Sensor befindet sich im Zustand < <stopped>></stopped>
		Blinken	Sensor befindet sich im Zustand < <pre-operati- onal>></pre-operati-
		dauerhaft	Sensor befindet sich im Zustand < <operatio- nal>></operatio-

CAN-ERROR LED	Farbe	Zustand	Beschreibung
		aus	Der Sensor arbeitet fehlerfrei oder hat keine Spannungsver- sorgung.
		vierfaches Blinken mit längerer Aus-Phase	Sensor befindet sich im Zustand < <bus passive="">></bus>
		Zweifaches Blinken mit anschlie- ßender längerer Aus-Phase	Sensor befindet sich im Zustand < <bus warn="">></bus>
		dauerhaft an	Sensor befindet sich im Zustand < <bus off="">></bus>

J1939

CAN-RUN LED	Farbe	Zustand	Beschreibung
	Oring	aus	Sensor wird gerade zurückge- setzt oder hat keine Spannungs- versorgung.
	Grun	dauerhaft an	Sensor ist betriebsbereit

CAN-ERROR LED	Farbe	Zustand	Beschreibung
	Rot	dauerhaft aus	Der Sensor arbeitet fehlerfrei oder hat keine Spannungsversor- gung.

4.7 Wechsel des Betriebsmodus

4.7.1 CAN-Modus (J1939 oder CANopen) zu RS485-Modus

Um die Funktionsweise des INC5502D kennenzulernen, kann der Sensor auch an das PC-Tool sensorTOOL angeschossen werden. Dafür wird der INC5502D von CAN- auf RS485-Modus umgestellt. Nach dem Empfang der Konfigurationsnachricht, siehe Abb. 11, schaltet der Sensor unmittelbar in den RS485-Modus und kann mit dem Parametrierkabel PC1/5, siehe A 1, über USB mit dem sensorTOOL verbunden werden, siehe A 3.

- Der zum Betrieb des Sensors am PC benötigte Treiber wird auf der Website zur Verfügung gestellt:
- 1 https://www.micro-epsilon.de/service/download/software/

 Nach dem Umschalten kann der Sensor nicht mehr über den CAN-Bus erreicht werden. Der Sensor kann jedoch über das sensorTOOL von RS485- auf CAN-Bus-Modus zurückgestellt werden, siehe 4.7.2.

CAN-Identi- fier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
60Bh	23h	FFh	5Fh	00h	6Dh	65h	62h	75h	Wechsel Be- triebsmodus zu RS485

Abb. 10 Wechsel Betriebsmodus von CANopen zu RS485

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
11h	00h						
(Interface-	(Wechsel						
Einstellun-	Betriebsmo-						
gen)	dus)						

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	11h	00h							Wechsel Be- triebsmodus zu RS485

Abb. 11 Wechsel Betriebsmodus von J1939 zu RS485

4.7.2 RS485-Modus zu CAN-Modus (J1939 oder CANopen)

Im sensorTOOL gibt es die Möglichkeit den Sensor wieder in den CAN-Modus umzuschalten.

Grundlegende Informationen zum Programm sensorTOOL finden Sie im Anhang, siehe A 3.

E Gehen Sie in das Menü Info und klicken Sie auf die Schaltfläche CANopen Modus.

Anschließend öffnet sich ein Dialog, welcher über die Folgen des Wechsels vom RS485-Modus auf den CAN-Modus informiert.

Bestätigen Sie den Dialog mit der Schaltfläche Ok, um den CAN-Modus zu aktivieren.

Die Verbindung wird geschlossen und der Sensor ist anschließend nicht mehr über RS485 erreichbar.

1

4.8 Einstellparameter des Sensors

Der Sensor bietet mehrere Parameter, um ihn an die jeweilige Anwendung optimal anzupassen.

Die folgende Tabelle listet die Parameter auf. Die ID wird für die entsprechende CAN-Message benötigt, siehe 5.5.6.

Name	Funktion	ID (dezimal, hex)	Datentyp	Wert	Wirkung	Werkseinstellung
			(Wert für Ob- jekt 2100_3h)			
TeachIn	Nullsetzen	50081,	UINT32	0	Normal	0
		C3A1h	8h	1	Setze aktuelle Position zu Null	-
			081, UINT32 3A1h 8h 543, UINT32 56Fh 8h 544, UINT32 544, UINT32 570h 8h 549, UINT32 575h 8h 541, UINT32 6Dh 8h 542, UINT32 66Fh 8h		Nullsetzen rückgängig machen	
IncDirTiltX	Richtungsumkehr für Winkel Tilt x	50543, C56Fh	UINT32 8h	0	Normal (Rechte Hand Re- gel)	0
				1	Invertiert	
IncDirTiltY	Richtungsumkehr	50544,	UINT32	0	Normal	0
	für Winkel Tilt y	C570h	8h	1	Invertiert	
IncChooseTilt	Achsenausrich- tung für Tilt-Winkel	50549, C575h	UINT32 8h	0	Verkip- pung y-z- Ebene	2
				1	Verkip- pung x-z- Ebene	
				2	Verkip- pung x-y- Ebene	
IncRangeLon	Messbereich für	50541,	UINT32	0	±180°	0
	Euler Longitudinal (Roll)	C56Dh	8h	1	0° 360°	
IncRangeLat	Messbereich	50542,	UINT32	0	±180°	0
	für Euler Lateral (Pitch)	C56Eh	8h	1	0° 360°	
IncDirLon	Richtungsumkehr	50539,	UINT32	0	Normal	0
	Euler Longitudinal (Roll)	C56Bh	8h	1	Invertiert	
IncDirLat	Richtungsumkehr	50540,	UINT32	0	Normal	0
	Euler Lateral (Pitch)	C56Ch	8h	1	Invertiert	

Name	Funktion	ID (dezimal, hex)	Datentyp (Wert für Ob- jekt 2100_3h)	Wert	Wirkung	Werkseinstellung
IncChooseLoLa	Achsenausrich- tung für Eulerwin- kel	chsenausrich- ng für Eulerwin- el C574h UINT32 8h 8h 8h 8h 8h 8h 8h 8h 8h 8h 8h 8h 8h		2		
				1	y-Achse ist Rotations- achse für Longitudi- nal-Winkel (Roll)	
				2	z-Achse ist Rotations- achse für Longitudi- nal-Winkel (Roll)	
FilterType	Auswahl Filterung für Winkelsignale	50091, C3ABh	UINT32 8h	0	Sensor-Fu- sion Filter	0
				1	Tiefpass- filter	
LowPassFreq	3dB Grenzfre- quenz des Tief- passfilters	50100, C3B4h	REAL32 6h	0,5 Hz 25 Hz	Frei wähl- bar	1,0 Hz
		2001 7D1h	UINT32 8h	0	Normal	0
FactoryDefault				1	Setze Werksein- stellungen	

5. CANopen Schnittstelle

5.1 Funktionsübersicht

Der Sensor besitzt ein standardisiertes CANopen-Interface gemäß CiA-301 und ein CiA-DS410 Geräteprofil. Alle generierten Messwerte sind über das Objektverzeichnis zugänglich. Vorgenommene Einstellungen können im permanenten Speicher des Sensors gesichert werden.

Verfügbare Funktionalitäten:

- vier Prozessdatenobjekte (TxPDO1 TxPDO4)
 - dynamisch mappbare Prozessdaten
 - ereignisgesteuerter Prozessdatenversand ausgelöst durch Messdatenänderung
 - intervallzeitgesteuerter Prozessdatenversand
 - Senden von Prozessdaten als Reaktion auf dem Empfang eines SYNC-Telegramms
- ein Service-Datenobjekt (Standard-SDO)
- Überwachungsmechanismus Heartbeat
- Speicher- und Wiederherstellungsfunktion für alle im Gerät speicherbaren Parameter
- Fehlermeldungen per Emergency-Objekt (EMCY)
- allgemeines Fehlerregister (Error Register)
- herstellerspezifisches Fehlerregister (Manufacturer Status)
- Fehlerliste (Pre-defined Error Field)
- Zustands- und Fehleranzeige per Zweifarb-LED (entspricht nicht CiA DR-303-3)

Im Bereich der geräteprofil- bzw. herstellerspezifischen Konfigurationsmöglichkeiten existieren:

- Einstellung der Node-ID und Baudrate mittels LSS (CiA DSP-305)
- Vorzeichenumkehr der Neigungswinkel
- Nullpunkteinstellung der Neigungswinkel bei den Lotwinkeln
- Sensorfusionsfilter
- Konfigurierbare Grenzfrequenz bei dem Tiefpassfilter
- diverse weitere Konfigurationsmöglichkeiten finden Sie im Kapitel 4.8

5.2 Positionierung von CANopen im Schichtenmodell

CANopen wurde im Verband "CAN in Automation" (CiA) standardisiert und stellt einen offenen Protokollstandard in der Automatisierungstechnik unter Nutzung des CAN-Busses als Übertragungsmedium dar. Ebenso wie fast alle Feldbusse baut auch CANopen auf dem ISO/OSI 7-Schichtmodell auf. CANopen definiert die Elemente für das Netzwerkmanagement, die Verwendung der CAN-Identifier (Nachrichtenadresse), das zeitliche Verhalten auf dem Bus, die Art der Datenübertragung, sowie anwendungsbezogene Profile. Dadurch ist es möglich, dass CANopen Geräte unterschiedlicher Hersteller in einem Netzwerk kombiniert verwendet werden können. Den Application-Layer beschreibt CANopen als Kommunikationsprofil, um eine einheitliche Art der Kommunikation zu gewährleisten; dies wurde im CiA DS-301 durch die CiA spezifiziert. Zudem wurden auch verschiedene Geräte- und Anwendungsprofile definiert. Diese sind in den Standards CiA DS-4xx zu finden.

Abb. 12 Schichtenmodell der Schnittstelle CAN-Bus

5.3 Gerätemodell

Die Kommunikation mit einem CANopen-Gerät (CAN node), siehe Abb. 12, erfolgt über sogenannte Datenobjekte.

Hierfür wurden von der CiA verschiedene Objekte für die unterschiedlichen Einsatzbereiche definiert.

Zum einen gibt es hoch priorisierte Prozessdatenobjekte (PDOs). Diese Telegramme dienen dem Austausch von Prozessdaten. Profilunabhängig gesehen, kann es sich bei PDOs um Telemetrie-Daten oder um Daten zur Parametrierung handeln. Üblicherweise erfolgt der Zugriff auf Parameter des Objektverzeichnisses eines Gerätes mittels Service-Datenobjekt (SDO).

Für das Netzwerkmanagement existieren die NMT-Objekte, mit dessen Hilfe der Zustandsautomat des CANopen-Gerätes gesteuert wird. Zusätzlich wird darüber die Zustandsüberwachung der Netzwerkknoten realisiert.

Es existieren noch weitere Objekte, welche für Synchronisation, Fehlermeldungen und Zeitstempeln definiert wurden. Jedes CANopen-Gerät besitzt ein eigenes Objektverzeichnis. In diesem sind die Parameter für alle CANopen-Objekte eingetragen.

5.4 Kommunikationsspezifische Standard-Objekte

Die CAN-Identifier der Kommunikationsobjekte (COB-IDs) werden entsprechend des Pre-Defined Connection Set, abhängig von der eingestellten Node-ID bestimmt. Diese ist bei den Sensoren werksseitig auf 11d bzw. 0Bh eingestellt. Die Kommunikationsobjekte werden, wie folgt berechnet.

Kommunikationsobjekt (COB)	Standardwert	Berechnung der COB-ID
NMT	0h	0h
SYNC	80h	80h
EMCY	8Bh	80h + Node-ID
TPDO1	18Bh	180h + Node-ID
TPDO2	28Bh	280h + Node-ID
TPDO3	38Bh	380h + Node-ID
TPDO4	48Bh	480h + Node-ID
Standard-SDO (CANopen-Master / Client \rightarrow CANopen-Slave / Server)	60Bh	600h + Node-ID
Standard-SDO (CANopen-Slave / Client $ ightarrow$	58Bh	580h + Node-ID
CANopen-Master / Client)		
Heartbeat	70Bh	700h + Node-ID

Abb. 13 COB-ID-Berechnung nach Predefined Connection Set

5.5 Objektverzeichnis

Hier sind alle existierenden Parameter enthalten, die durch andere Busteilnehmer zugänglich sein müssen, um den Sensor parametrieren zu können.

Durch diese Einflussgrößen werden Statusmaschinen, Kommunikationsverhalten und die Applikation selbst beeinflusst. Die Untergliederung CANopen untergliedert ein Objektverzeichnis wie in Abb. 14 dargestellt.

Dabei sind die Bereiche **1000h - 1FFFh**, **2000h - 5FFFh** und **6000h - 9FFFh** am relevantesten, da über diese die Kommunikation und die Eingruppierung in ein bestimmtes Geräteprofil realisiert wird. Zusätzlich können herstellerspezifische Besonderheiten darin implementiert werden, welche in keinem der beiden anderen Bereiche zulässig wären.

Index	Verwendung
0000	Nicht genutzt
0001-009F	Datentypen (Sonderfall)
00A0-0FFF	Reserviert
1000-1FFF	Kommunikationsprofil
2000-5FFF	Herstellerspezifischer Bereich
6000-9FFF	Bis zu 8 standardisierte Geräteprofile
A000-AFFF	Prozessabbilder von IEC61131-Geräten
B000-BFFF	Prozessabbilder von CANopen-Gateways nach CiA 302-7
C000-FFFF	Reserviert

Abb. 14 Untergliederung Objektverzeichnis

5.5.1 Zugriff auf Parameterdaten per Service-Daten-Objekt (SDO)

Ein CANopen-Gerät wird in der Regel per SDO parametriert. Die entsprechenden COB-IDs werden im vorherigen Kapitel beschrieben, siehe 5.4. Das Datenfeld dieser CAN-Nachricht ist wie in folgender Darstellung aufgebaut.

Abb. 15 Datenfeld einer CAN-Nachricht

Über die Service-Daten-Objekte ist ein Zugriff auf die in Kapitel Objektverzeichnis, siehe 5.5, erwähnten Faktoren möglich. Wie der Grafik entnommen werden kann, ist ein entsprechender Parameter über eine Kombination von 16-bit Index und 8-bit Subindex addressierbar. Die Grafik stellt zusätzlich dar, dass insgesamt bis zu 8 Bytes im Datenteil der CAN-Nachricht untergebracht sind, welche den Command Specifier, die Adressierung und die Parameterdaten enthalten.

5.5.2 Kommunikationsparameter nach CIA DS-301

Index	Subindex	Parameter	Datentyp	Attribute	Standard- value	Ability to store value	Map- ping
1000h	0h	Gerätetyp	UNS32	const	4019Ah		-
1001h	0h	Fehlerregister	UNS8	ro	0h		0
1002h	0h	Herstellerstatusregister	UNS32	ro	0h		0
1003h	Vordefinier	tes Fehlerfeld					-
	0h	Anzahl der Fehlereintäge	UNS32	rw	0h		-
	1h 5h	Fehler-Codes (aktuellster Fehler auf niedrigstem Index)	UNS32	ro	0h		-
1005	0h	COB-ID SYNC	UNS32	rw	80h		-
1008	0h	Gerätename	VSTR	const	produkt- spezifisch		-
100Ah	0h	Softwareversion	VSTR	const	produkt- spezifisch		-
1010h	Parameter	speichern (,s', ,a', ,v', ,e' - 73h, 61h, 76h	, 65h)				-
	0h	Anzahl der Einträge	UNS32	ro	4h		-
	1 h	alle Einstellungen speichern	UNS32	rw	0h		-
	2h	Kommunikationsparameter speichern	UNS32	rw	0h		-
	3h	profilspezifische Parameter speichern	UNS32	rw	0h		-
	4h	herstellerspezifische Parameter spei- chern	UNS32	rw	0h		-

Index	Subindex	Parameter	Datentyp	Attribute	Standard- value	Ability to store value	Map- ping
1011h	Standardp	arameter wiederherstellen (,l', ,o', ,a', ,d'	– 6Ch, 6Fh,	61h, 64h)	1	1	-
	0h	Anzahl der Einträge	UNS32	ro	4h		-
	1h	Alles auf Werkseinstellungen setzen	UNS32	rw	0h		-
	2h	Werksteinstellung kommunikations- spezifische Parameter, siehe 5.5.2	UNS32	rw	0h		-
	3h	Werksteinstellung profilspezifische Parameter, siehe 5.5.4	UNS32	rw	0h		-
	4h	Werkseinstellung herstellerspezifische Parameter, siehe 4.8, siehe 5.5.3	UNS32	rw	0h		-
1014h	0h	COB-ID EMCY	UNS32	ro	80h + Node-ID		-
1015h	0h	Sperrzeit zwischen zwei EMCY-Nach- richten (Vielfaches von 100µs)	UNS16	rw	0h	x	-
1017h	0h	Intervallzeit für Heartbeat (Vielfaches von 1ms, 0h = deaktiviert)	UNS16	rw	0h	x	-
1018h	Identify Ob	ject			1	1	
	0h	höchster unterstützter Subindex	UNS8	ro	4h		-
	1h	Herstellerkennung (Micro-Epsilon Messtechnik GmbH)	UNS32	ro	0536h		-
	2h	Produkt-Code / Artikelnummer	UNS32	ro	4C4F3Ch		-
	3h	Revisionsnummer	UNS32	ro	6060100h		-
	4h	Seriennummer	UNS32	ro	produktspe- zifisch		-
1022h	0h	Anzahl der Fehlerklassen	UNS8	ro	2h		-
	1h	Kommunikationsparameter	UNS8	rw	0h		-
	2h	spezifische Fehlerklassen	UNS8	rw	0h		-
1800h	Transmit P	DO1 Kommunikationsparameter	·		·	·	
	0h	höchster unterstützter Subindex	UNS8	ro	5h		-
	1h	COB-ID	UNS32	rw	180h + Node-ID	x	
	2h	Übertragungstyp(synchron/asynchron/ bei Messwertänderung)	UNS8	rw	1h	x	-
	3h	Kompatibilitätseintrag	UNS16	rw	0h	x	-
	4h	Kompatibilitätseintrag	UNS8	rw	0h	x	-
	5h	Intervallzeit für zykl. Senden (Vielfa- ches von 1ms, 0 = deaktiviert)	UNS16	rw	0h	x	-
1801h	Transmit P	DO2 Communication parameter			1	1	
	0h	höchster unterstützter Subindex	UNS8	ro	5h		-
	1h	COB-ID	UNS32	rw	280h + Node-ID	x	-
	2h	Übertragungstyp(synchron/asynchron/ bei Messwertänderung)	UNS8	rw	1h	x	-
	3h	Kompatibilitätseintrag	UNS16	rw	0h	x	-
	4h	Kompatibilitätseintrag	UNS8	rw	Oh	x	-
	5h	Intervallzeit für zykl. Senden (Vielfa- ches von 1ms, 0 = deaktiviert)	UNS16	rw	Oh	x	-

Index	Subindex	Parameter	Datentyp	Attribute	Standard- value	Ability to store value	Map- ping	
1802h	Transmit P	DO3 Kommunikationsparameter				1		
	0h	höchster unterstützter Subindex	UNS8	ro	5h		-	
	1h	COB-ID	UNS32	rw	380h + Node-ID		-	
	2h	Übertragungstyp(synchron/asynchron/ bei Messwertänderung)	UNS8	rw	1h	x	-	
	3h	Kompatibilitätseintrag	UNS16	rw	0h	x	-	
	4h	Kompatibilitätseintrag	UNS8	rw	0h	x	-	
	5h	Intervallzeit für zykl. Senden (Vielfa- ches von 1ms, 0 = deaktiviert)	UNS16	rw	0h	x	-	
803h	Transmit P	DO4 Kommunikationsparameter	·					
	0h	höchster unterstützter Subindex	UNS8	ro	5h		-	
	1h	COB-ID	UNS32	rw	480h + Node-ID	x	-	
	2h	Übertragungstyp(synchron/asynchron/ bei Messwertänderung)	UNS8	rw	1h	x	-	
	3h	Kompatibilitätseintrag	UNS16	rw	0h	x	-	
	4h	Kompatibilitätseintrag	UNS8	rw	0h	x	-	
	5h	Intervallzeit für zykl. Senden (Vielfa- ches von 1ms, 0 = deaktiviert)	UNS16	rw	0h	x	-	
A00h	TxPDO1 Mappingparameter							
	0h	höchster unterstützter Subindex	UNS8	ro	2h	x	-	
	1h	Slope Long 16	UNS32	rw	60100010h	x	-	
	2h	Slope Lat 16	UNS32	rw	60200010h	x	-	
	3h 8h	Mapping Eintrag 3 8	UNS32	rw	0h	x	-	
A01h	TxPDO2 M	appingparameter				,		
	0h	höchster unterstützter Subindex	UNS8	ro	0h	x	-	
	1h 	Mapping Eintrag 1	UNS32	rw	0h	x	-	
	8h	 Mapping Eintrag 8						
A02h	TxPDO3 M	appingparameter	1					
	0h	höchster unterstützter Subindex	UNS8	ro	0h	x	-	
	1h 	Mapping Eintrag 1	UNS32	rw	0h	x	-	
	8h	 Mapping Eintrag 8						
A03h	TxPDO4 M	apping Parameter						
	0h	höchster unterstützter Subindex	UNS8	ro	0h	x	-	
	1h 	Mapping Eintrag 1	UNS32	rw	0h	X	-	
	8h	Mapping Eintrag 8						
1F80h	0h	NMTStartup	UNS32	ro	Ch	x	-	

5.5.3 Herstellerspezifische Kommunikationspar	rameter
---	---------

Index	Subin- dex	Parameter	Datentyp	Attribute	Standard- value	Speichern	Map- ping
2000h	Sensori	nformationen					
	0h	Höchster unterstützter Subindex	UNS8	ro	Dh	-	-
	1h	Blockversion	UNS8	ro	-	-	-
	2h	Endian	UNS8	ro	-	-	-
	3h	Option	INT32	ro	-	-	-
	4h	Charge	INT32	ro	-	-	-
	5h	Änderungsindex	INT32	ro	-	-	-
	6h	Kalibrierungstag	INT32	ro	-	-	-
	7h	Kalibrierungsmonat	UNS8	ro	-	-	-
	8h	Kalibirierungsjahr	UNS8	ro	-	-	-
	9h	Kalibrierungssoftwareversion	UNS8	ro	-	-	-
	Ah	CANopen-Interface-Softwareversion	UNS8	ro	-	-	-
2100h	Konfigu	rationsschnittstelle	·				
	0h	Höchster unterstützter Subindex	UNS8	ro	9h	-	-
	1h	Gesamtanzahl der Konfigurations-IDs	UNS32	ro	-	-	-
	2h	Konfigurations-ID welche beschrieben oder gelesen werden soll	UNS16	rw	-	-	-
	3h zur gewählten ID gehörender Subin- dex für Lese- oder Schreibvorgang		UNS8	ro	-	-	-
	4h	Wertebereich der ausgewählten ID "Minimalwert"	DOMAIN	ro	-	-	-
	5h	Wertebereich der ausgewählten ID "Maximalwert"	DOMAIN	ro	-	-	-
	6h	Feld zum Schreiben/Lesen einer Gleit- kommazahl	REAL32	rw	-	x	-
	7h	Feld zum Schreiben/Lesen einer vor- zeichenbehafteten Ganzzahl	INT32	rw	-	x	-
	8h	Feld zum Schreiben/Lesen einer vor- zeichenlosen Ganzzahl	UINT32	rw	-	x	-
	9h	Feld zum Schreiben/Lesen einer Zei- chenkette	VSTR	rw	-	x	-
2200h	Diagnos	stics	1	1		1	
	0h	Höchster unterstützter Subindex	UNS8	ro	3h	-	-
	1h	Maximalanzahl Diagnosetext-Seiten	UNS8	ro	-	-	-
	2h	Diagnosetext-Seite welche gelesen werden soll	UNS8	WO	-	-	-
	Зh	Feld zum Lesen der Diagnosetext- Seite	VSTR	ro	-	-	-

Index	Subin- dex	Parameter	Datentyp	Attribute	Standard- value	Speichern	Map- ping				
3000h	Tilt-Winl	kel		·	·						
	0h	Höchster unterstützter Subindex	UNS8	ro	2h	x	-				
	1h	Tilt x ¹	INT16	ro	0h	-	х				
	2h	Tilt y 1	INT16	ro	0h	-	x				
3100h	Beschle	eunigungswerte									
	0h	Höchster unterstützter Subindex	UNS8	ro	3h	x	-				
	1h	Beschleunigung X ²	INT16	ro	0h	-	x				
	2h	Beschleunigung Y ²	INT16	ro	0h	-	х				
	3h	Beschleunigung Z ²	INT16	ro	0h	-	x				
3200h	Drehrat	aten									
	0h	Höchster unterstützter Subindex	UNS8	ro	3h	x	x				
	1h	Drehrate X ¹	INT32	ro	0h	-	x				
	2h	Drehrate Y ¹	INT32	ro	0h	-	х				
	3h	Drehrate Z ¹	INT32	ro	0h	-	x				
3900	0h	Temperatur ¹	INT16	ro	0h	-	x				
5FFFh	0h	Wechsel zum RS485 Modus (,m ['] , ,e ['] , ,b ['] , ,u ['] - 6Dh, 65h, 62h, 75h	UNS32	wo	0h	-	-				

1) Skalierungsfaktor 100

2) Skalierungsfaktor 10000

5.5.4 Kommunikationsparameter nach CIA DS-410

Index	Subindex	Parameter	Datentyp	Attribute	Standard- wert	Speichern	Mapping
6000h	0h	Resolution ¹	UNS16	ro	Ah	x	-
6010h	0h	Slope Long 16	INT16	ro	0h	-	х
6011h	0h	Slope Long 16 Operationsparameter	UNS8	ro	0h	x	-
6020h	0h	Slope Lat 16	INT16	ro	0h	-	x
6021h	0h	Slope Lat 16 Operationsparameter	UNS8	ro	0h	x	-
6110h	0h	Slope Long 32 ²	INT32	ro	0h	-	x
6111h	0h	Slope Long 32 Operationsparameter	UNS8	ro	0h	x	-
6120h	0h	Slope Lat 32 ²	INT32	ro	0h	-	х
6121h	0h	Slope Lat 32 Operationsparameter	UNS8	ro	0h	x	-

1) Wenn der Wertebereich des Sensors auf 0,00° .. 360,00° gesetzt ist, sind die 32bit Slope Werte zu benutzen (ID50541 und ID50542, siehe 4.8)

2) Skalierungsfaktor 100

5.5.5 LSS-Dienste

Die CiA DSP 305 CANopen Layer Setting Service and Protocol (LSS) Dienste und Protokolle wurden implementiert, um das Lesen und Ändern der folgenden Parameter über das Netzwerk zu ermöglichen:

- die CANopen-Knoten-ID
- die CAN-Baudrate
- die LSS-Adresse

Ein LSS-Master ist verantwortlich für die Konfiguration dieser Parameter auf einem oder mehreren LSS-Slaves im CANopen-Netzwerk.

Der Master verwendet die COB-ID 7E5h und der Sensor die 7E4h. Der Zugriff auf die LSS-Dienste ist ausschließlich verfügbar, wenn sich der CANopen-Knoten im Zustand Stopped befindet.

Nachfolgend zwei Beispiele für Kommandosequenzen möglicher Änderungen. Nach den Änderungen empfiehlt es sich, den Sensor neu zu starten. Bei der Änderung der Knoten-ID sollte anschließend eine Bootup-Nachricht erscheinen, welche die neue Knotennummer beinhaltet. Im Anschluss an die Änderung der Bitrate ist die Bootup-Nachricht nach dem Neustart erst sichtbar, wenn die Gegenstelle ebenso auf die geänderte Bitrate eingestellt ist.

5.5.5.1 Bitrate ändern

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
00h	02h	0Bh	-	-	-	-	-	-	Wechsel in NMT Zu- stand < <stopped>></stopped>
7E5h	04h	01h	00h	00h	00h	00h	00h	00h	LSS Konfiguration
7E5h	13h	00h	02h	00h	00h	00h	00h	00h	Bitrate 500kBit wählen
7E5h	17h	00h	Speichern						
00h	80h	00h	-	-	-	-	-	-	Reset Node

Abb. 16 LSS - Bitrate auf 500 kBit ändern

Index	Bitrate
0	1 Mbit/s
1	800 kbit/s
2	500 kBits/s
3	250 kBits/s
4	125 kBits/s
5	Unbenutzt / nicht implementiert
6	Unbenutzt / nicht implementiert
7	Unbenutzt / nicht implementiert
8	Unbenutzt / nicht implementiert
9	Unbenutzt / nicht implementiert

Abb. 17 LSS Baudratentabelle mit den in CANopen verfügbaren Bitraten

5.5.5.2 Node-ID ändern

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
00h	02h	0Bh	-	-	-	-	-	-	Wechsel in NMT Zu- stand < <stopped>> Beispiel NodeID 11</stopped>
7E5h	40h	36h	05h	00h	00h	00h	00h	00h	Herstellerkennung (aus Index 1018h/01)
7E5h	41h	3Ch	4Fh	4Ch	00h	00h	00h	00h	Produkt-Code (aus Index 1018h/02)
7E5h	42h	00h	01h	06h	06h	00h	00h	00h	Revisionsnummer (aus Index 1018h/03)
7E5h	43h	78h	56h	34h	12h	00h	00h	00h	Seriennummer (aus In- dex 1018h/04) Beispiel 1234567
7E5h	11h	0Ch	00h	00h	00h	00h	00h	00h	neue NodelD (0Ch) zuweisen, Beispiel NodelD 12
7E5h	17h	00h	Speichern						
00h	80h	0Bh	-	-	-	-	-	-	Reset Node, Beispiel NodelD 11

Abb. 18 LSS - NodelD ändern

5.5.6 Parametrisierung des Sensors

Für die Parametrisierung des Sensors steht das Objekt 2100h zur Verfügung.

Index	Subindex	Beschreibung
2100h		Config Interface
	0h	Anzahl der Sub-Indizes des Verzeichnis Eintrages
	1h	Anzahl der im Sensor verfügbaren Einstellparameter
	2h	Auswahl der Einstellparameter-ID, auf die ein Zugriff erfolgen soll
	3h	Feld, welches den zugehörigen Subindex für Schreib-/Lesezugriffe hinsichtlich des Datentyps
_		anzeigt.
	4h	Minimum-Wert (Interpretation des Datentyps abhängig von Subindex 3h)
	5h	Maximum-Wert (Interpretation des Datentyps abhängig von Subindex 3h)
	6h	Schreib-/Lese- Subindex für Float Wertebereich
	7h	Schreib-/Lese- Subindex für INT32 Wertebereich
	8h	Schreib-/Lese- Subindex für UINT32 Wertebereich
	9h	Schreib-/Lese- Subindex für VSTRING Wertebereich

Abb. 19 Auszug aus dem herstellerspezifischen Bereich des Objektverzeichnis

Die Parametrisierung wird nach folgendem Ablaufschema durchgeführt:

- Setzen Sie die ID des gewünschten Einstellparameters in Subindex 2h.
- Führen Sie den Lese- oder Schreibzugriff über den zum Wertebereich der Parameter passenden Subindex (6h 9h) durch.

Falls der Subindex nicht bekannt ist, können Sie diesen über den Subindex 3h nach erfolgtem Schritt 1 ermitteln. Zusätzlich können Sie mit den Subindizes 4h und 5h die obere und untere Grenze des Wertebereichs für den Parameter ausgeben. Diese geben aber erst einen passenden Wert aus, nachdem Schritt 1 abgeschlossen ist. Die Interpretation erfolgt nach dem Datentyp, welcher über den Subindex 3h identifiziert wurde.

Beispiel Nullsetzen:

Folgendes Beispiel veranschaulicht den Ablauf an einem Sensor mit der Node-ID 11_d/B_h. Dazu wird die Einstellparameter-ID 50081 (TeachIn), siehe 4.8, verwendet.

CAN- Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
60Bh	2Bh	00h	21h	02h	A1h	C3h	00h	00h	Auswählen des Einstellparameters C3A1h
58Bh	60h	00h	21h	02h	00h	00h	00h	00h	Bestätigung des Schreibvorgangs
60Bh	40h	00h	21h	03h	00h	00h	00h	00h	Lesen des zugehöri- gen Indizes
58Bh	4Fh	00h	21h	03h	07h	00h	00h	00h	Antwort mit Index
60Bh	23h	00h	21h	07h	01h	00h	00h	00h	Setzen des Wertes für den Einstellpara- meter C3A1h = 01h
58Bh	60h	00h	21h	07h	00h	00h	00h	00h	Bestätigung des Schreibvorgangs

CAN- Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
60Bh	40h	00h	21h	04h	00h	00h	00h	00h	Lesen Minimum des Einstellparameters
60Bh	40h	00h	21h	05h	00h	00h	00h	00h	Lesen Maximum des Einstellparame- ters
60Bh	23h	00h	21h	06h	XXh	XXh	XXh	XXh	Schreibe REAL32 Wert eines Einstell- parameters
60Bh	40h	00h	21h	06h	01h	00h	00h	00h	Lese REAL32 Wert eines Einstellpara- meters
60Bh	23h	00h	21h	07h	XXh	XXh	XXh	XXh	Schreibe INT32 Wert eines Einstellpa- rameters
60Bh	40h	00h	21h	07h	01h	00h	00h	00h	Lese INT32 Wert eines Einstellparame- ters
60Bh	23h	00h	21h	08h	XXh	XXh	XXh	XXh	Schreibe UINT32 Wert eines Einstellpa- rameters
60Bh	40h	00h	21h	08h	01h	00h	00h	00h	Lese UINT32 Wert eines Einstellpara- meters
60Bh	23h	00h	21h	08h	XXh	XXh	XXh	XXh	Schreibe VSTR Wert eines Einstellpara- meters (String < 5 Zeichen)
60Bh	21h	00h	21h	08h	XXh	XXh	XXh	XXh	Schreibe VSTR Wert eines Einstellpara- meters (String > 4 Zeichen)

Desweiteren sind folgende Kommandos sind möglich:

Die Einstellparameter finden Sie im Kapitel Einstellparameter des Sensors, siehe 4.8.

5.6 Prozessdatenobjekte: PDO (TxPD01 - TxPD04)

Der Sensor beeinhaltet bis zu vier Sende-Prozessdatenobjekte (TxPDO1 - TxPDO4). Standardmäßig sind im ersten Sendeobjekt die aktuellen Neigungswerte longitudinal und lateral enthalten. Sie können die Informationen in den Sendeobjekten dynamisch mit Parametern befüllen (dynamisches PDO-Mapping).

Standardmapping des Neigungssensors INC5502D:

Datenfeld des TxPDO1									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
Neigungswert (Objekt: 6010ł	longitudinal າ)	Neigungswert (Objekt: 6020h	lateral ı)			leer			

Abb. 20 Default TPDO1

Die TxPDOs können mittels standardisierter Mappingsequenz mit den Objekten belegt werden, welche der nachfolgenden Tabelle entnommen werden können.

Index	Subindex	Name	Format	Skalierungs- faktor	Wertebereich
3000h	1h	Tilt-X	16bit signed	100	-90,00 90,00
3000h	2h	Tilt-Y	16bit signed	100	-90,00 90,00
3100h	1h	Beschleunigung X-Achse	16bit signed	10000	-3,00000 3,00000
3100h	2h	Beschleunigung Y-Achse	16bit signed	10000	-3,00000 3,00000
3100h	3h	Beschleunigung Z-Achse	16bit signed	10000	-3,00000 3,00000
3200h	1h	Gyrowerte X-Achse	32bit signed	100	-500,00 500,00
3200h	2h	Gyrowerte Y-Achse	32bit signed	100	-500,00 500,00
3200h	3h	Gyrowerte Z-Achse	32bit signed	100	-500,00 500,00
3900h	0h	Temperatur	16bit signed	100	-100,00 100,00
6010h	0h	Longitudinal 16bit	16bit signed	100	-180,00 180,00
6020h	0h	Lateral 16bit	16bit signed	100	-85,00 85,00
6110h	0h	Longitudinal 32bit	32bit signed	100	0 360,00
6120h	0h	Lateral 32bit	32bit signed	100	0 360,00

Abb. 21 Mapbare Objekte

Kommunikationsarten für Prozessdatenobjekte

Das Verhalten der Prozessdaten-Kommunikation kann über die Objekte 1800h - 1803h beeinflusst werden. Die Kommunikationsart wird dabei über den Subindex 02h festgelegt.

5.6.6.1 Synchronisiertes Senden

Alle aktivierten TxPDOs können jederzeit (Zustand Operational vorausgesetzt), durch Senden einer SYNC-Nachricht an das Gerät abgefragt werden. Es können mehrere Sensoren gleichzeitig befragt werden. Dafür muss der Subindex 02h im Objekt 1800h einen Wert zwischen 01h und F0h enthalten. Dieser Wert gibt vor, nach welcher Anzahl der eingegangenen SYNC-Nachrichten die damit konfigurierten PDOs gesendet werden.

5.6.6.2 Zyklisches Senden

Neben dem synchronisierten Senden können auch andere zyklische Übertragungsmodi gewählt werden. Zum einen existiert im System die rein ereignisgesteuerte Übertragung bei Wertänderung. Dazu muss im Subindex 02h der Wert auf FEh gesetzt werden. Des Weiteren existiert die TimerEvent-gesteuerte Übertragung. Diese wird zusätzlich durch applikationsgesteuerte Events beeinflusst und ist somit nur bei sehr trägen Systemen sinnvoll. Hierbei wird mittels der Zeit im Subindex 05h, welche in Millisekunden angegeben ist, zyklisch gesendet. Zusätzlich wird bei einer Wertänderung gesendet. Bei Verwendung dieser Kommunikationsart muss der Subindex 02h den Wert FFh enthalten und Subindex 05h einen Wert größer 00h.

5.7 Fehlermeldungen - EMCY-Codes

Mittels sogenannter Emergency-Nachrichten werden wichtige interne Fehler, wie auch CAN-Kommunikationsfehler, an die anderen Teilnehmer im Bus übermittelt. Signalisiert der Status einen aufgetretenen Fehler, so werden zusätzlich die Objekte 1001h (Fehlerregister) und 1003h (vordefiniertes Fehlerfeld) aktualisiert. Werden Fehler bereinigt, wird in der Regel eine Emergency-Nachricht mit dem Code 0000h gesendet. Bei EMCY-Code FFFDh - FFFFh gilt: Die unteren 3 Byte der EMCY Nachricht enthalten den EMCY-Code, die oberen 5 Byte enthalten gegebenenfalls noch einen herstellerspezi-fischen Fehlercode, mit dem sich die genaue Fehlerursache genauer eingrenzen lässt.

EMCY-Code	Beschreibung
0000h	Kein Fehler vorhanden oder Fehler zurückgesetzt
8100h	Bus-Warnzustand erreicht
8110h	Pufferüberlauf, Verlust von CAN-Nachrichten
8120h	Überschreitung des CAN Warnzustand-Limits
8130h	Ausfall des Guarding-Masters erkannt
8140h	Bus-Off Zustand verlassen
8150h	CAN-ID Kollision
8210h	PDO wird nicht verarbeitet, da eine falsche Länge bei der Datenzuordnung (Mapping) verwendet wurde
FFFDh	Warnmeldung, aktuell liegt ein Messwert-Drift vor
FFFEh	Fehlermeldung über einen bestehenden internen Fehler innerhalb der Sensorik-Komponente
FFFFh	Fehlermeldung über bestehenden Fehler innerhalb der Interface-Komponente

5.7.1 Fehlerbehandlung

Tritt im Gerät ein Fehler oder eine Warnung auf, wird dieser an alle Teilnehmer im Bus gemeldet. Bei den Fehlern mit den Fehlercodes FFFEh und FFFFh kommt es in der Regel dazu, dass in den Zustand Stopped gewechselt wird. Das Verhalten kann jedoch über das Objekt 1029h und dessen Subindizes angepasst werden.

5.7.2 Herstellerstatusregister

Das Objekt 1002h (Herstellerstatusregister) wird permanent mit einem herstellerspezifischen Statuscode aktualisiert.

Statuscode	Erläuterung
0	Status ok
1	Messdatenüberlauf bei interner Kommunikation
2	Neustart des Sensorcontrollers
4	Schaltsignal Schaltausgang No 1
8	Ruhelage detektiert
16	Fehler: Sensorcontroller meldet Fehlersignal an CAN-Inter- face
32	Drift in Daten erkannt
64	Schaltsignal Schaltausgang No 2
128	Fehler: Fehlverhalten bei interner Kommunikation zwischen Sensorcontroller und CAN-Interface detektiert
256	Fehler: es werden keine Messdaten vom Sensorcontroller bereitgestellt

Abb. 22 Übersicht der herstellerspezifischen Statuscodes

5.7.3 Herstellerspezifische Fehlercodes

In der nachfolgenden Tabelle sind die möglichen herstellerspezifischen Codes, welche im Zusammenhang mit den EMCY-Codes FFFDh-FFFFh auftreten können, aufgelistet.

Fehlercode hexadezimal	Fehler
0h	ERROR_NONE
1h	ERROR_CHECK_CONFIG
2h	ERROR_PROCEDURE_INIT
3h	ERROR_GET_DATA
4h	ERROR_CALC_OUTPUT
5h	ERROR_SENSOR_OUTPUT
6h	ERROR_INVALID_PROC_STATE
7h	ERROR_TEACH_IN
8h	ERROR_SWITCH_INIT
9h	ERROR_GET_BLOCKMAP_ENTRY_0X80
Ah	ERROR_FETCH_FIFO
Bh	ERROR_WRITE_OLD_BAUD_BACK
Ch	ERROR_BAUD_STATE_ERROR
Dh	ERROR_HANDLE_CONFIG_DATA
Eh	ERROR_INTO_BUFFER_CHN_INDEX
Fh	ERROR_INTO_BUFFER_MAX_NUMBER_EXCEEDED
10h	ERROR_INTO_BUFFER_MCPY
11h	ERROR_INTERNAL_SW
12h	ERROR_SET_FACTORY_DEFAULT
13h	ERROR_SET_SIGNALS_TO_CHANNELS
14h	ERROR_EXECUTE_CONFIG_WRITE_RAM_TO_FLASH
15h	ERROR_CHECK_CONFIG_PARAM
16h	ERROR_INIT_TIMER45
17h	ERROR_EXT_PERIPHERAL_INIT
18h	ERROR_INIT_MEMS
19h	ERROR_GET_MEMS_DATA
1Ah	ERROR_INTO_BUFFER
1Bh	ERROR_SWITCH_ON_CONDI1_INVALID
1Ch	ERROR_SWITCH_OFF_CONDI1_INVALID
1Dh	ERROR_SWITCH_ON_CONDI2_INVALID
1Eh	ERROR_SWITCH_OFF_CONDI2_INVALID
1Fh	ERROR_SWITCH_ON_CONDI3_INVALID
20h	ERROR_SWITCH_OFF_CONDI3_INVALID
21h	ERROR_SWITCH_ON_CONDI4_INVALID
22h	ERROR_SWITCH_OFF_CONDI4_INVALID
23h	ERROR_EXECUTE_CONFIG
24h	ERROR_CHECK_CALIB
25h	ERROR_INIT_MOVG_AVG_FILTER
26h	ERROR_INIT_SF_FILTER
27h	ERROR_INIT_CRIT_DAMP_IIR
28h	ERROR_INIT_SWITCH_HDL
29h	ERROR_CALC_CALIB_CORRECTION
2Ah	ERROR_CALC_MOVG_AVG_AXES
2Bh	ERROR_CALC_MOVG_AVG_GYRO

2Ch	ERROR_CALC_CRIT_DAMP_IIR
2Dh	ERROR_CALC_SF_FILTER
2Eh	ERROR_CALC_MOVG_AVG_GYRO_OFFS
2Fh	ERROR_TEACH_IN_WRITE_RAM_TO_FLASH
30h	ERROR_INIT_DATA_PROCESSING
31h	ERROR_INIT_INPUT
32h	ERROR_INIT_OUTPUT
33h	ERROR_SF_CALC_MOVG_AVG
34h	ERROR_SF_STATE_INVALID
35h	ERROR_MEMS_SELF_TEST
36h	ERROR_INIT_SENSOR_FIFO
37h	ERROR_CHECK_CONFIG_PARAM_WRITE_RAM_TO_FLASH
38h	ERROR_CHECK_PARAM_MIN_MAX
39h	ERROR_MEMS_TIMEOUT
3Ah	ERROR_RUNTIME_EXCEEDED
3Bh	ERROR_INVALID_AXIS_MAPPING_CH1
3Ch	ERROR_INVALID_AXIS_MAPPING_CH2
3Dh	ERROR_INVALID_AXIS_MAPPING_CH3
3Eh	ERROR_INVALID_LOW_PASS_FREQ
3Fh	ERROR_SWITCH_ON_OFF_CONDI1_INCONSISTENT
40h	ERROR_SWITCH_ON_OFF_CONDI2_INCONSISTENT
41h	ERROR_SWITCH_ON_OFF_CONDI3_INCONSISTENT
42h	ERROR_SWITCH_ON_OFF_CONDI4_INCONSISTENT
43h	ERROR_CANOPEN_SAVE
44h	ERROR_INTERNAL_COMMUNICATION_FAILED
45h	ERROR_TIMEOUT_REGARDING_NEW_DATA_SIGNAL_AT_INTERNAL_COM- MUNICATION

6. SAE J1939 Schnittstelle

6.1 Grundlagen - Nachrichtenformat

Der grundlegende Aufbau von SAE J1939 Nachrichten ist wie folgt dargestellt, siehe Abb. 23.

Abb. 23 Aufbau einer J1939 Nachricht

Es wird über Adressierung von sogenannten PDUs (Protocol Data Units) kommuniziert, deren Zusammensetzung wie folgt dargestellt ist, siehe Abb. 24.

Abb. 24 Aufbau einer J1939 Protocol Data Unit (PDU)

6.2 Kommunikationsmöglichkeiten

Für die Kommunikation stehen dann drei Möglichkeiten zur Verfügung:

- Zielgerichtete Kommunikation
- Rundrufkommunikation
- Proprietäre Kommunikation

6.2.1 Zielgerichtete Kommunikation

Bei der zielgerichteten Kommunikation kommt das PDU1 (PDU Format 0 ... 239) zum Einsatz. Als Zieladresse wird dabei die globale Zieladresse (255) benutzt.

6.2.2 Rundrufkommunikation

Bei dieser Art der Kommunikation wird das PDU2 (PDU Format 240 ... 255) verwendet. Das kann bedeuten, dass man

- eine Nachricht von einer einzelnen oder von mehreren Quellen an ein einzelnes Ziel sendet.

- eine Nachricht von einer einzelnen oder von mehreren Quellen an mehrere Ziele sendet.

6.2.3 Proprietäre Kommunikation

Proprietäre Kommunikation bietet Spielraum für herstellerspezifische Parametrierkommandos. Diese gibt ebenfalls die Möglichkeiten

- der Rundrufkommunikation
- der zielgerichteten Kommunikation

Für diese Methode wurde eine eigene PGN (Parameter Group Number) definiert.

6.3 Nachrichtentypen

Im SAE J1939 stehen die nachfolgenden Nachrichtentypen zur Verfügung:

- Kommando
- Request (Anfrage)
- Rundruf/Antwort
- Bestätigung
- Gruppenfunktionen

Für Anfragen, Bestätigungen und Gruppenfunktionen sind eigens PGNs definiert.

Um einen schnelleren Einstieg auch für Anwender ohne J1939 Erfahrung zu gewährleisten, sind hier nachfolgend zwei Beispiele zur Zusammensetzung eines Requests sowie zur Nutzung proprietärer PGN aufgeführt.

6.3.1 Request

Für einen Request, ist die PGN 59904 (00EA00h) definiert. Diese kann für globale Anfragen wie auch zielgerichtet genutzt werden. Im Datenteil der Nachricht ist die abzufragende PGN zu hinterlegen. Die nächste Grafik, siehe Abb. 25, veranschaulicht die Abfrage der PGN 00FF00h.

Bei diesem Beispiel wurde gleichzeitig farbig hervorgehoben, wie sich der Identifier zusammensetzt. Durch die eigentlichen Bitpositionen ergibt sich aus den ersten drei Feldern, welche die Werte 6h, 0h und 0h aufweisen, in der Summe ein Wert von 18h an erster Stelle des Identifier.

Abb. 25 Darstellung eines Request am Beispiel des PGN 00FF00h

6.3.2 **Proprietäres PGN**

Für die proprietären PGN gibt es mehrere definierte Nummern. Dabei entfällt die 61184 (00EF00h) auf das Proprietary A. Dieses wird in diesem Fall für die Sensorkonfiguration genutzt.

Abb. 26 Aufbau eines Proprietary A PGN (Ändern der Bitrate auf 500 kBit)

Des Weiteren gibt es das Proprietary A2 mit der Nummer 126720 (01EF00h) und den Bereich 65280 – 65535 (00FF00h – 00FFFFh) für die Proprietary B PGNs. Diese werden beim Absetzen auf den Bus global adressiert.

6.4 Gerätename und Defaultadresse

Ist der Sensor auf Werkseinstellungen gesetzt, startet er mit der Adresse 90 (5Ah). Er unterstützt dynamische Adressvergabe. Beim Start des Sensors wird ein Address-Claim-Telegramm auf dem Bus abgesetzt. Im Telegramm ist ein 64bit Gerätename codiert, mit welchem der Sensor eindeutig identifiziert werden kann. Zudem wird über den Namen auch die Priorität am Bus festgelegt.

Nachfolgend genannte Felder sind im 64bit Gerätenamen codiert:

- Arbitrary Address Capable, Unterstützung der dynamischen Adressvergabe (1 Bit)
- Industry Group (3 Bit)
- Vehicle System Instance (4 Bit)
- Vehicle System (7 Bit)
- Function (8 Bit)
- Function Instance (5 Bit)
- ECU Instance (3 Bit)
- Manufacturer Code (11 Bit)
- Identity Number (21 Bit)

Der Manufacturer Code stellt die Herstellerkennung Micro-Epsilon Messtechnik GmbH & Co. KG dar (Wert 1297 dezimal). Die Identity Number entspricht der SAE J1939 Seriennummer des Sensors. Ab Werk sind folgende Felder des Gerätenamens voreingestellt:

Manufacturer Code: 1297 (Micro-Epsilon Messtechnik GmbH & Co. KG) Identity Number: SAE J1939 Seriennummer des Sensors Industry Group: 0 Vehicle System: 0 Function: 145 (Inertial Sensor)

6.5 Prozessdatenübersicht (Transmit PGNs)

Die Übertragung der ermittelten Messdaten erfolgt durch eine Reihe von Parametergruppen, welche in verschiedenen Proprietary-B Nachrichten (Broadcast) zusammengefasst sind. Die PGNs werden alle 10 ms übertragen und können beliebig aktiviert bzw. deaktiviert werden.

Verfügbare PGNs:

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflö- sung	Offset	Wertebereich	Einheit
65280 (FF00h)	Proprietary-B TxPGN1	Drehrate X-Achse	0	32	0,01	-600	-600 600 (°/s)	°/s
		Beschleu- nigung X-Achse	32	16	0,0001	-3	-3 3 (g)	g
		Status	48	8	1	0	0 255	-
	1	1	1	1				
65281 (FF01h)	Proprietary-B TxPGN2	Drehrate Y-Achse	0	32	0,01	-600	-600 600	°/s
		Beschleu- nigung Y-Achse	32	16	0,0001	-3	-3 3	g
		Status	48	8	1	0	0 255	-
65282 (FF02h)	Proprietary-B TxPGN3	Drehrate Z-Achse	0	32	0,01	-600	-600 600	°/s
		Beschleu- nigung Z-Achse	32	16	0,0001	-3	-3 3	g
		Status	48	8	1	0	0 255	-
	1			1				
65283 (FF03h)	Proprietary-B TxPGN4	Neigungs- wert longitu- dinal (roll)	0	16	0,01	-180	-180,00 180,00	0
		Neigungs- wert lateral (pitch)	16	16	0,01	-180	-180,00 180,00	0
		Status	32	8	1	0	0 255	-
65284 (FF04h)	Proprietary-B TxPGN5 ¹	Neigungs- wert longitu- dinal (roll)	0	16	0,01	0	0 360	0
		Neigungs- wert lateral (pitch)	16	16	0,01	0	0 360	0
		Status	32	8	1	0	0 255	-
				1	1			
65285	Proprietary-B	Tilt X-Axis	0	16	0,01	-90	-90 90	0
(FF05h)	TxPGN6	Tilt Y-Axis	16	16	0,01	-90	-90 90	0
		Status	32	8	1	0	0 255	-
05000	Due ve viete ve D	NI a la via a a	0	10	0.01	100	100.00	0
(FF06h)	TxPGN7 ¹	wert longitu- dinal (roll)	0	10	0,01	-180	180,00	
		Neigungs- wert lateral (pitch)	16	16	0,01	0	0 360	0
		Status	32	8	1	0	0 255	-

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflö- sung	Offset	Wertebereich	Einheit
65287 (FF07h)	Proprietary-B TxPGN8	Neigungs- wert longitu- dinal (roll)	0	16	0,01	0	0 360	0
		Neigungs- wert lateral (pitch)	16	16	0,01	-180	-180 180	0
		Status	32	8	1	0	0 255	-
65288	Proprietary-B	Temperatur	0	16	0,01	-100	-100 100	°C
(FF08h)	TxPGN9	Status	16	8	1	0	0 255	-

1) Im Wertebereich 0 ... 360° ist PGN5 zu wählen, im Wertebereich -180 ...+180° das PGN7. (ID50541 und ID50542, siehe 4.8)

Abb. 27 Aufbau des PGN FF00n mit farblicher Hervorhebung der Bestandteile

6.6 Konfiguration des SAE J1939 Interfaces

Die Konfiguration des Sensors erfolgt über ein Proprietary A PGN61184 (00EF00h Punkt-zu-Punkt-Verbindung). Über das PGN werden die folgenden verschiedenen Funktionen ermöglicht.

Befehlscode Beschreibung	Befehls- code	Funktionscodebe- schreibung	Funktionscode	mögliche Parameter
Lesen eines Konfigurationswertes	40			PGN
Schreiben eines Konfigurations- wertes	22			PGN + Daten (Abb. 32, Abb. 34, Abb. 35)
Konfigurationsfunktionen	11	Wechsel zur RS485 Schnittstelle	0	00h (Abb. 11)
		Aktivierung / Deak- tivierung einzelner PGNs	1	01h/00h + PGN (Abb. 41)
		Konfiguration der Bitrate	2	ID der Bitrate (Abb. 37)
		Neustart des Sensors	4	00h (Abb. 40)
Antwortcode Beschreibung	Befehls- code	Funktionscodebe- schreibung	Funktionscode	mögliche Parameter
Schreibvorgang erfolgreich	60	-	-	PGN + [Datenbyte 3 Da- tenbyte 7] = 00h
Ein Fehler ist aufgetreten	80	-	-	Fehlercode (Abb. 42)

6.6.1 Parameterwert mittels einer ID lesen

Ein Lesezugriff auf Parameterwerte erfolgt, indem die Datenbytes mit dem Befehlscode 40h und nachfolgend mit der zu lesenden Parameter-ID (vom Datentyp uint16) befüllt wird, siehe nachfolgende Beispiele.

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
40h (Lesen)	LOWBYTE	HIGHBYTE					
	der	der					
	Parameter-ID	Parameter-ID					

Abb. 28 Kommandoformat Lesebefehl

Antwort:

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7	
40h (Lesen)	LOWBYTE	HIGHBYTE	Länge der	Ergebnis-Daten				
	der	der	Antwort in Bit		[Byte 0 .	Byte 3]		
	Parameter-ID	Parameter-ID						

Abb. 29 Kommandoformat Antwort auf Lesebefehl

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	40h	6Fh	C5h	-	-	-	-	-	Lese IncDir- TiltX
18EF015Ah	40h	6Fh	C5h	00h	00h	00h	00h	FFh	Resultat des Lesekom- mandos

Abb. 30 Erfolgreiches Lesen des Parameters "IncDirTiltX"

Bei Zeichenketten hingegen wird die Antwort mittels Broadcast-Announce-Message angekündigt und anschließend per nummerierte Transportprotokoll-Datatransfer-Pakete übertragen. Diese enthalten jeweils bis zu 7 Byte der Antwortzeichenkette. Unbenutzte Bytes in der Nachricht werden mit FFh gekennzeichnet. Die Übertragung erfolgt hierbei nicht adressiert an den Aufrufer, sondern in der aktuellen Version als Rundruf-Kommunikation. Der in der Antwort enthaltene Befehlscode ist bei Zeichenketten, anders als bei Zahlenwerten, die 41h.

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	40h	84h	C5h	-	-	-	-	-	Lese C584h
1CECFF5Ah	20h	17h	00h	04h	FFh	00h	EFh	00h	Antwort / Ankündigung des Ergebnisses der Operation in einer Übertragung in mehre- ren Segmenten
1CEBFF5Ah	01h	41h	84h	C5h	13h	28h	34h	68h	Antwort / 1. Segment
1CEBFF5Ah	02h	33h	3Eh	34h	30h	29h	7Ch	7Ch	Antwort / 2. Segment
1CEBFF5Ah	03h	28h	43h	68h	33h	3Ch	2Dh	34h	Antwort / 3. Segment
1CEBFF5Ah	04h	30h	29h	FFh	FFh	FFh	FFh	FFh	Antwort / letztes Segment

Abb. 31 Erfolgreiches Lesen eines Konfigurationswertes, dessen Rückgabewert mehr als 5 Datenbytes beträgt

Die Tabelle stellt eine Anfrage zum Lesen des Parameters mit der ID C584h und die Antwort auf den erfolgreichen Lesezugriff (Datentyp String, mit einer Länge von 19 (13h) Zeichen, Wert "(Ch3>40) || (Ch3<- 40) "28h 43h 68h 33h 3Eh 34h 30h 29h 7Ch 7Ch 28h 43h 68h 33h 3Ch 2Dh 34h 30h 29h") dar.

6.6.2 Parameterwert mittels einer ID schreiben

6.6.2.1 Zahlenwerte bis Datentypgröße 32 Bit oder Strings bis zu einer maximalen Länge von 5 Zeichen

Für den Schreibzugriff wird der Befehlscode 22h benutzt, gefolgt von der ParameterID und den zu schreibenden Daten. Diese können 4, bzw. bei Strings maximal 5 Byte beanspruchen.

• Füllen Sie nicht genutzte Bytes mit FFh.

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
22h	LOWBYTE	HIGHBYTE		Bis zu 4 Da	atenbytes		
(Schreiben)	der	der	k	bei Zahlenwert	ten (LSB first)		
	Parameter-ID	Parameter-ID	Bis	s zu 5 Datenby	ytes bei Strings	3	
			(Zeich	henkette in les	barer Reihenfo	lge)	

Abb. 32 Kommandoformat Schreibbefehl

Die zugehörige Antwort beinhaltet dann den Kommando-Code 60h, die ID, welche geschrieben wurde und Bytes mit dem Wert FFh.

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
60h	LOWBYTE	HIGHBYTE		FFh	n FFh FFh FFh	FFh	
(Schreiben-	der	der					
Erfolg)	Parameter-ID	Parameter-ID					

Abb. 33 Kommandoformat Antwort auf Schreibbefehl

Beispiele:

Die folgende Tabelle veranschaulicht einen Schreibzugriff auf den Parameter mit der ID C56Dh (01h soll geschrieben werden), sowie die Antwort auf den erfolgreichen Schreibzugriff:

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	22h	6Fh	C5h	00h	-	-	-	-	Setze Parameter C56Fh auf den Wert 0h
18EF015Ah	60h	6Fh	C5h	FFh	FFh	FFh	FFh	FFh	Antwort / Erfolgsmel- dung Schreiben

Abb. 34 Praxisbeispiel erfolgreiches Schreiben des Parameters "IncDirTiltX" vom Typ UINT32

Die folgende Tabelle veranschaulicht einen Schreibzugriff auf den Parameter mit der ID C584h ("43 68 31 3E 39h" / "Ch1>9" soll geschrieben werden).

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	22h	84h	C5h	43h	68h	31h	3Eh	39h	Setze Parameter C584h auf "43 68 31 3E 39h" / "Ch1>9"
18EF015Ah	60h	84h	C5h	FFh	FFh	FFh	FFh	FFh	Antwort / Erfolgsmel- dung Schreiben

Abb. 35 Praxisbeispiel: erfolgreiches Schreiben eines Konfigurationswertes vom Type String (< 6 Bytes)

6.6.2.2 Strings bis zu einer Länge von 64 Zeichen

Bei einer Übertragung von mehr als 5 und weniger als 64 Zeichen muss das Transport-Protokoll genutzt werden. An der Stelle wird zuvor eine Broadcast-Announce-Message (BAM) geschickt, welche eine größere Datenmenge für das Proprietary-A PGN ankündigt und im Sensor einen entsprechenden Empfangspuffer reserviert. Anschließend werden die entsprechenden Datenpakete mittels des Transportprotokoll-Datatransfer PGN einzeln hintereinander an den Sensor verschickt. Dabei ist ein Intervall von 50 ms zwischen den Nachrichten einzuhalten.

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
20h	LOWBYTE	HIGHBYTE	Anzahl der	FFh	00h	EFh	00h
	der	der	Pakete mit	(reserviert)			
	Parameter-ID	Parameter-ID	Daten				
							1
Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
01h	22h	LOWBYTE	HIGHBYTE	Datenbyte 4	Datenbyte 7	werden mit Zeid	chen den ers-
(Paketnummer) (Schreiben)	der	der	-	ten Zeichen de	s Strings befüll	t
		Parameter-ID	Parameter-ID				

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
1CEC5A01h	20h	16h	00h	04h	FFh	00h	Efh	00h	Ankündigung der Opera- tion mittels einer Übertra- gung in mehreren Semen- ten an PGN 61184
1CEB5A01h	01h	22h	84h	C5h	28h	43h	68h	33h	1. Segment (enhält Befehl, ID des Konfigurations- parameters und erste Zeichen der zu übertra- genden Menge)
1CEB5A01h	02h	3Eh	34h	30h	29h	7Ch	7Ch	28h	2. Segment
1CEB5A01h	03h	43h	68h	33h	3Ch	2Dh	34h	30h	3. Segment
1CEB5A01h	04h	29h	FFh	FFh	FFh	FFh	FFh	FFh	letztes Segment
18EF015Ah	60h	84h	C5h	FFh	FFh	FFh	FFh	FFh	Antwort / Erfolgsmeldung Schreiben

Abb. 36 Praxisbeispiel: erfolgreiches Schreiben eines Konfigurationswertes vom Type String (>5 Bytes)

6.6.3 Einstellen der Bitrate

Im Sensor sind die SAE konformen Bitraten 250kBit und 500kBit, sowie die nicht konforme Bitrate 1Mbit implementiert. Diese können wie folgt über den Befehlscode 11h und den Funktionscode 02h parametrisiert werden:

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
11h	02h	00h (250 kbit)					
(Interface-	(Setzen der	01h (500 kbit)					
Einstellungen)	Bitrate)	02h (1 Mbit)					

Abb. 37 Befehl zum Wechsel der Bitrate auf 500 kbit

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	11h	02h	01h	-	-	-	-	-	Änderung der Bitrate auf 500 kBit
18EEFF5Ah	01h 1	00h 1	20h	A2h	00h	FFh	00h	80h	AddressClaim- Message

Abb. 38 Konfigurationsnachricht zur Änderung der Bitrate

Unmittelbar nach dem Absetzen der Konfigurationsnachricht erfolgt eine erneute Anmeldung des Sensors am Bus mittels einer ACM-Nachricht (Address Claiming Message), unter Verwendung der neu eingestellten Bitrate.

6.6.4 Neustart des Sensors

Dieser Neustart erfolgt über folgendes Kommando:

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
11h	04h						
(Interface-	(Neustart)						
Einstellungen)							

Abb. 39 Neustart des Sensors per Kommando mit anschließender Neuanmeldung am Bus.

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	11h	04h	-	-	-	-	-	-	Restart-Kom- mando
18EEFF5Ah	01h 1	00h 1	20h	A2h	00h	FFh	00h	80h	AddressClaim- Message

Abb. 40 Neustart des Sensors

6.6.5 An-/ Abwählen von zyklisch gesendeter Prozessdaten

Im Auslieferungszustand ist die Ausgabe aller Prozessdaten aktiv. Der Systemdesigner kann gezielt die für ihn nicht relevanten Prozessdaten wie nachfolgend veranschaulicht deaktivieren.

Datenbyte 0	Datenbyte 1	Datenbyte 2	Datenbyte 3	Datenbyte 4	Datenbyte 5	Datenbyte 6	Datenbyte 7
11h	01h	LOWBYTE	HIGHBYTE	00h (aus)			
(Interface-	(Aktivierung/	der	der	01h (an)			
Einstellungen)	Deaktivierung PGNs)	Parameter-ID	Parameter-ID				

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	11h	01h	01h	FFh	00h	-	-	-	Deaktiviere PGN 00FF01
18EF5A01h	11h	01h	01h	FFh	01h	-	-	-	Aktiviere PGN 00FF01

Abb. 41 Deaktivieren / Aktivieren eines Broadcast PGN

6.6.6 Fehler-Antworttelegramme

Tritt bei einem Zugriff über das Proprietary-A PGN ein Fehler auf, so beginnt das Antworttelegramm im Datenteil mit einer 80h.

Es gibt folgende Fehlercodes:

Fehlercode	Beschreibung
F001h	Konfigurations ID nicht vorhanden, siehe Abb. 43
F002h	Fehler bei interner Kommunikation, siehe Abb. 44
F003h	Unbekannter Funktionscode, siehe Abb. 45

Abb. 42 Fehlercode-Tabelle

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	22h	EFh	C5h	01h	-	-	-	-	Setze Parameter C5EFh auf 1h
18EF015Ah	80h	EFh	C5h	01h	F0h	00h	00h	00h	Antwort / Fehler- meldung Sch- reiben - Objekt existiert nicht

Abb. 43 Schreiben fehlgeschlagen, da Parameter nicht existiert

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	22h	6Fh	C5h	01h	-	-	-	-	Setze Parameter C56Fh auf 1h
18EF015Ah	80h	6Fh	C5h	02h	F0h	00h	00h	00h	Antwort / Fehler- meldung Schreiben - Fehler bei interner Kommunikation ist aufgetreten

Abb. 44 Fehler bei interner Kommunikation

CAN-Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
18EF5A01h	22h	6Fh	C5h	02h	-	-	-	-	Setze Parameter C56Fh auf 2h
18EF015Ah	80h	6Fh	C5h	03h	F0h	00h	00h	00h	Antwort / Fehler- meldung Schrei- ben - unbekannter Funktionscode

Abb. 45 Fehlermeldung "unbekannter Funktionscode"

7. Betrieb

Das Messgerät ist bei der Lieferung bereits kalibriert. Eine Kalibrierung durch den Benutzer ist nicht erforderlich. Nach dem Anschluss an die Spannungsversorgung ist der Sensor sofort betriebsbereit und initiiert die Messung eigenständig. Die Konfiguration des Sensors ist über SAE J1939 bzw. CANopen möglich, siehe 6.6 (SAE J1939), siehe 5.5.6 (CANopen).

8. Haftungsausschluss

Alle Komponenten des Gerätes wurden im Werk auf die Funktionsfähigkeit hin überprüft und getestet. Sollten jedoch trotz sorgfältiger Qualitätskontrolle Fehler auftreten, so sind diese umgehend an MICRO-EPSILON oder den Händler zu melden.

MICRO-EPSILON übernimmt keinerlei Haftung für Schäden, Verluste oder Kosten, die z. B. durch

- Nichtbeachtung dieser Anleitung / dieses Handbuches,
- Nicht bestimmungsgemäße Verwendung oder durch unsachgemäße Behandlung (insbesondere durch unsachgemäße Montage, Inbetriebnahme, Bedienung und Wartung) des Produktes,
- Reparaturen oder Veränderungen durch Dritte,
- Gewalteinwirkung oder sonstige Handlungen von nicht qualifizierten Personen

am Produkt entstehen, entstanden sind oder in irgendeiner Weise damit zusammenhängen, insbesondere Folgeschäden.

Diese Haftungsbeschränkung gilt auch bei Defekten, die sich aus normaler Abnutzung (z. B. an Verschleißteilen) ergeben, sowie bei Nichteinhaltung der vorgegebenen Wartungsintervalle (sofern zutreffend).

Für Reparaturen ist ausschließlich MICRO-EPSILON zuständig. Es ist nicht gestattet, eigenmächtige bauliche und/oder technische Veränderungen oder Umbauten am Produkt vorzunehmen. Im Interesse der Weiterentwicklung behält sich MICRO-EPSILON das Recht auf Konstruktionsänderungen vor.

Im Übrigen gelten die Allgemeinen Verkaufsbedingungen der MICRO-EPSILON, die unter Impressum | Micro-Epsilon https://www.micro-epsilon.de/impressum/ abgerufen werden können.

9. Service, Reparatur

Bei einem Defekt am Sensor oder der Kabel:

- Speichern Sie nach Möglichkeit die aktuellen Sensoreinstellungen in einem Parametersatz, um nach der Reparatur die Einstellungen wieder in den Sensor laden zu können.
- Senden Sie bitte die betreffenden Teile zur Reparatur oder zum Austausch ein.

Bei Störungen, deren Ursachen nicht eindeutig erkennbar sind, senden Sie bitte immer das gesamte Messsystem an:

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.de

10. Außerbetriebnahme, Entsorgung

Um zu vermeiden, dass umweltschädliche Stoffe freigesetzt werden und um die Wiederverwendung von wertvollen Rohstoffen sicherzustellen, weisen wir Sie auf folgende Regelungen und Pflichten hin:

- Sämtliche Kabel am Sensor und/oder Controller sind zu entfernen.
- Der Sensor und/oder Controller, dessen Komponenten und das Zubehör sowie die Verpackungsmaterialien sind entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des jeweiligen Verwendungsgebietes zu entsorgen.
- Sie sind verpflichtet, alle einschlägigen nationalen Gesetze und Vorgaben zu beachten.

Für Deutschland / die EU gelten insbesondere nachfolgende (Entsorgungs-) Hinweise:

 Altgeräte, die mit einer durchgestrichenen Mülltonne gekennzeichnet sind, dürfen nicht in den normalen Betriebsmüll (z.B. die Restmülltonne oder die gelbe Tonne) und sind getrennt zu entsorgen. Dadurch werden Gefahren für die Umwelt durch falsche Entsorgung vermieden und es wird eine fachgerechte Verwertung der Altgeräte sichergestellt.

- Eine Liste der nationalen Gesetze und Ansprechpartner in den EU-Mitgliedsstaaten finden Sie unter https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en.
 Hier besteht die Möglichkeit, sich über die jeweiligen nationalen Sammel- und Rücknahmestellen zu informieren.
- Altgeräte können zur Entsorgung auch an MICRO-EPSILON an die im Impressum unter https://www.micro-epsilon.de/ impressum/ angegebene Anschrift zurückgeschickt werden.
- Wir weisen darauf hin, dass Sie für das Löschen der messspezifischen und personenbezogenen Daten auf den zu entsorgenden Altgeräten selbst verantwortlich sind.
- Unter der Registrierungsnummer WEEE-Reg.-Nr. DE28605721 sind wir bei der Stiftung Elektro-Altgeräte Register, Nordostpark 72, 90411 Nürnberg, als Hersteller von Elektro- und/ oder Elektronikgeräten registriert.

Anhang

A 1 Optionales Zubehör

Bezeichnung	Artikelnummer
PC1/5 Parametrierkabel inkl. Netzteil für INC5502D	6965007
PC5/5-IWT Versorgungs- und Ausgangskabel, 5 m	29011154
29011116 PC10/5-M12 Versorgungs-/Ausgangskabel, 10 m lang	29011116

A 2 Werkseinstellung

Werkseinstellung für die Sensorparameter, siehe 4.8

A 3 Software sensorTOOL

Mit sensorTOOL steht Ihnen eine dokumentierte Software zur Verfügung, mit der Sie den Sensor einstellen, Messdaten visualisieren und dokumentieren können.

Verbinden Sie den Sensor über die USB-Schnittstelle mit einem PC/Notebook.

Die Versorgungsspannung wird über die USB-Schnittstelle bereitgestellt.

Starten Sie das Programm sensorTOOL.

Dieses Programm finden Sie online unter

https://www.micro-epsilon.de/download/software/sensorTOOL.exe.

Verbindungen	
Sensorgruppe	
inertialSENSOR	~
Sensortyp	
inertialSENSOR INC5502	~
Scan Options	
Suche auf seriellen Schnittstellen	
Schnelle Suche RS485	
Aktiviere Logging	
Lade Sensor-Protokoll	۲

		Deutsch
/erbindungen	⊘ <	Suchergebnisse (1)
ensoraruppe		inertialSENSOR INC5502 @ COM5, 230400 Baud, Address(RS485) 92 Ansicht Rohparameter
inertialSENSOR	~	Parameter
ensortyp		Sensortyp: SensorOnMEbus (0)
inertialSENSOR INC5502	~	Seriennummer Controller: 92
anoptionen		Softwareversion: 2.2k
Suche auf seriellen Schnittstellen		
Schnelle Suche RS485		
Aktiviere Logging		
	~	
inzelsensor-Modus		

- Wählen Sie den angeschlossenen Sensor aus.
- Klicken Sie auf die Schaltfläche Sensor mit dem Lupensymbol.

Das Programm sucht auf den verfügbaren Schnittstellen nach angeschlossenen Sensoren.

Abb. 46 Erste interaktive	Seite nach	Aufruf des	sensorTOOL
---------------------------	------------	------------	------------

In der Übersicht werden alle verfügbaren Kanäle angezeigt.

Wählen Sie einen gewünschten Sensor aus.

Klicken Sie auf die Schaltfläche Starte Datenaufnahme, um die Messung zu Starten.

A 3.1 Menü Datenaufnahme

Starten Sie die Datenaufnahme durch einen Klick auf Starte Datenaufnahme oder auf die Abbildung des Sensors.

Es erscheint folgendes Fenster.

inertialSENSOR INC5502					
Port Nummer:	COM5				
Baudrate:	230400				
Sensoradresse:	92				
Seriennummer Controller:	92				
Softwareversion:	2.2k				

 \rightarrow Verbindung trennen

Abb. 48 Ansicht Verbindung trennen

Bei Drücken der Schaltfläche Verbindung trennen, springt das Menü zur Sensorsuche, siehe Abb. 48, zurück.

K N K Y		Drücken Sie diese Schaltfläche Skalierung zurücksetzen, um die Y-Skala auf die ursprüngliche Einstellung zurückzusetzen (z.B. nach Zoom).
	•	Drücken Sie diese Schaltfläche Zum jetzigen Zeitpunkt springen, um den aktuellen Signalverlauf anzuzeigen.

A 3.1.1 Start / Stop

Starten Sie die Datenaufnahme, indem Sie auf die Schaltfläche Start klicken, siehe Abb. 49.

Die Aufnahme wird komplett neu gestartet, und die vorher angehaltene Aufnahme geht verloren.

Stoppen Sie die Datenaufnahme, indem Sie auf die Schaltfläche Stop klicken, siehe Abb. 50.

Abb. 49 Start Abb. 50 Stop

A 3.1.2 Signalverarbeitung

Folgende Auswahlmöglichkeiten bei der Signalverarbeitung stehen zur Verfügung:

			Deaktiviert	Deaktiviert; Grundeinstellung
		Mittolung	Gleitender Mittelwert	
		Mittelarig	Gleitender Median	
			Rekursiver Mittelwert	
			Deaktiviert	Deaktiviert; Grundeinstellung
			Kontinuierlich	Manueller Trigger
	Signalver- arbeitung	Trigger	Einmalig (messwertbasierend)	Sample einstellbar; zeichnet Signal- verlauf entsprechend den eingestellten Samples auf; je mehr Samples, desto länger der Verlauf
			Einmalig (zeitbasierend)	Millisekunden einstellbar; zeichnet Sig- nalverlauf entsprechend der eingestell- ten Zeit auf.
Datenaufnahme		Unterab- tastung	Deaktiviert	Deaktiviert; Grundeinstellung
			Messwertbasiert	Anzahl der Samples ist einstellbar; jede x-te Messung wird erfasst.
			Zeitbasiert	Zeitbasiert; Zeit im Millisekundenbe- reich einstellbar
		Master	Jetzt mastern	Setzt den Master. Die Schaltfäche wird erst aktiv, wenn in der Tabelle Datenaufnahme die Mastering Check- box aktiviert wird, siehe Abb. 51. Das Mastern hat nur Auswirkungen auf die im sensorTOOL angezeigten Messwer- te. Auf die vom Sensor ausgegebenen Messwerte hat das Mastern keine Auwirkungen.
			Zurücksetzen	Setzt den Master wieder zurück.

1) Zum Beispiel alle 5000 ms: Nach dieser Zeit aktualisiert sich der angezeigte Verlauf.

A 3.1.3 Tabelle Datenaufnahme

Hier können Sie die Messdaten auswählen, die im Zeitdiagramm dargestellt werden sollen, sowie die Anzahl deren Nachkommastellen.

Name Name	Farbe	Aktueller Wert	Min	Max	Peak-to-peak	Mastering	Einheit	Nachkommastellen
🗹 Angular rate X		0,030	- 0,240	0,210	0,450	0,00 🖨	°/s	3
Angular rate Y		- 0,010	- 0,250	0,230	0,480	0,00 🗘	°/s	3
Angular rate Z		0,040	- 0, 190	0,180	0,370	■ 100,00 ≑	°/s	3
Acceleration X		- 0,051	- 0,058	- 0,044	0,014		g	3
Acceleration Y		- 0,009	- 0,015	- 0,006	0,009		g	3
Acceleration Z		1,021	1,001	1,038	0,036		g	3
Temperature		41,750	41,620	41,870	0,250		۰c	3

Abb. 51 Ausschnitt Tabelle

Name	Hier können Signalverläufe der Kanäle ein- und ausgeblendet werden.
Farbe	Hier können Farbeinstellungen der einzelnen Verläufe geändert werden.
Aktueller Wert	Anzeige des aktuellen Messwertes.
Min	Minimum des ermittelten Messwertes.
Мах	Maximum des ermittelten Messwertes.
Peak-to-peak	Differenz zwischen Max und Min.
Mastering	Durch Aktivieren der Mastering Checkbox, siehe Abb. 51, kann der Masterwert manuell einge- tragen werden. Die Masterwerte werden durch Jetzt mastern im Menü Datenaufnahme > Signalverarbeitung im Reiter Master gesetzt. Wählen Sie einen sinnvollen Wert im Bereich -1000 bis +1000 aus.
Einheit	Auswahl des Ausgangs, der angezeigt werden soll. Die Ausgänge werden im Menü Einstellun- gen unter Ausgabe / Ausgabebereich und Justierung vorher eingestellt.
Nachkommastellen	0 - 12

A 3.1.4 Messdaten aufzeichnen und speichern

In der Datenaufnahme werden ausschließlich die Messdaten zur Anzeige gebracht aber nicht automatisch auf dem PC gespeichert. Sie können aber in der CSV Ausgabe die Datenübertragung in eine *.CSV Datei starten, oder nur den aktuellen sichtbaren Bereich aus dem Zeitdiagramm abspeichern.

Datenaufnahme	CSV Ausgabe	Format	Punkt / Komma	
		Separator	Komma / Semicolon / Tabulator	
Grau hinterlegte Felder erfordern eine Auswahl.		Wer	t Dunkel umrandete Felder erfordern die Angabe eines Werte	es

A 3.2 Menü Einzelwert

💌 Wechseln Sie in das Menü Einzelwert.

Verbindungen 🚳 I	Datenaufn	ahme 😐	Einzelwert	6	Einstellungen	(i) Info				[Deutsch 🛇
inertialSENSOR INC5502	⊘ <		Angular rate X					Angular rate Y			
Port Nummer: COM3 Baudrate: 230400 Sensoradresse: 92 Seriennummer Controller: 92 Softwareversion: 23b		0,010°/s				-0,100°/s					
→ Verbindung trennen			Ar	ngular ra	te Z			Accele	ration X		
Datenaufnahme	0	0,000°/s				-0,050g					
	Name Name	Farbe	Schriftgröße	Aktueller Wert	Min	Max	Peak-to-peak	Mastering	Enheit	Nachkommastell	
Signalverarbeitung	•	Angular rate X		3 🗢	0,010	- 0,230	0,270	0,500		*/s	3
CSV Augasha		Angular rate Y		3 🗘	- 0,100	- 0,200	0,190	0,390		°/s	3
CSV Ausgabe		Angular rate Z		3 🔹	0,000	- 0,170	0,150	0,320		°/s	3 E
	Acceleration X		3 🐳	- 0,050	- 0,054	- 0,045	0,009		9	3	
	Acceleration Y		3 🗘	- 0,010	- 0,027	0,002	0,029		9	3	
		Acceleration Z		3 🔹	1,021	0,965	1,070	0,105		9	3
Format Komma	~	Temperature		3 🗘	42,000	41,870	42,000	0,130		•c	3 E
Separator Tabulator	~	Longitudinal		3 🗘	- 0,590	- 0,630	- 0,560	0,070		•	3
Dateien aufteilen 100000 Ceilen	~	Lateral		3 🗢	2,780	2,740	2,840	0,100			3
Office Support		Tilt Y		3 🗘	1,230	1,200	1,270	0,070		•	3
Office Explorer											

Abb. 52 Messansicht (Menü Einzelwert) im Programm sensorTOOL

In diesem Menü können Sie die Anzeige von bis zu 9 Messwerten größer darstellen. Diese können Sie durch Aktivieren in der aufgeführten Liste auswählen.

A 3.3 Menü Einstellungen

Wechseln Sie in das Menü Einstellungen.

A 3.3.1 Signalverarbeitung

Signalverarbeitung Euler-/Positionswinkel		
Statische Filterung (Tiefpass)	0,50	🗘 fc [Hz]
O Dynamische Filterung (SensorFUSION)		

Im Bereich Signalverarbeitung Euler-/Positionswinkel kann wahlweise ein Tiefpassfilter (Frequenz 0,5 ... 25 Hz) oder eine dynamische Filterung des Ausgangssignals aktiviert werden.

A 3.3.2 Signalauswahl

Signalauswahl	
🗹 Drehrate X	Beschleunigung X
🗹 Drehrate Y	Beschleunigung Y
🗹 Drehrate Z	Beschleunigung Z
Elektroniktemperatur	Positionswinkel Tilt Y
Eulerwinkel Longitudinal	Positionswinkel Tilt Z
Eulerwinkel Lateral	Test

Im Bereich Signalauswahl kann die Ausgabe der Signale über die RS485 Schnittstelle jeweils aktiviert bzw. deaktiviert werden.

A 3.3.3 Messkonfiguration Eulerwinkel / Positionswinkel Tilt

Mit der Schaltfläche Nullsetzen kann der Sensor in jeder Position auf die Mitte des Messbereichs gesetzt werden. Durch die Schaltfläche Zurücksetzen wird das Nullsetzen rückgängig gemacht.

Im Bereich Messkonfiguration können Sie die Ausrichtung des Sensors an die Montageposition anpassen, siehe 4.4.1, siehe 4.4.2.

A 3.4 Menü Info

Wechseln Sie in das Menü Info.

In dieser Ansicht erhalten Sie weiterführende Informationen zu dem verbundenen System. Außerdem können die Einstellungen exportiert bzw. importiert, oder in eine Zwischenablage kopiert werden, sowie das System auf Werkseinstellungen zurückgesetzt werden.

Indem Sie die Schaltfläche In die Zwischenablage betätigen, können Sie die Informationen und Einstellungen zum gewählten Controller in der Zwischenablage speichern.

Indem Sie die Schaltfläche Werkseinstellungen betätigen, können Sie den Zustand Werkseinstellungen wieder herstellen. Alle deaktivierten Kanäle werden wieder aktiviert, die Intensitätsabgleiche und speziell getroffenen kanalbezogenen Einstellungen werden zurückgesetzt. Bestätigen Sie das sich daraufhin öffnende Dialogfenster mit *Ja*, um den Controller zurückzusetzen.

Durch Einstellungen exportieren öffnet sich der Explorer und bietet das Speichern der

Controllereinstellungen in eine vorgegebene Datei *.csv auf dem PC an.

Durch Einstellungen importieren öffnet sich der Explorer und bietet Ihnen das Importieren von Controllereinstellungen aus einer vorgegebenen Datei *.csv auf dem PC an.

Die Schaltfläche CANOpen Modus ermöglicht den Wechsel des Busmodus, siehe 4.7.2

 Es empfiehlt sich, immer nachdem Sie das System eingerichtet haben, die aktuellen Einstellungen extern auf Ihrem Rechner zu sichern.

Wenn Sie die Schaltfläche Verbindung trennen drücken, springt das Menü zurück zur Startseite des sensorTOOLs.

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 · 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de · www.micro-epsilon.de Your local contact: www.micro-epsilon.com/contact/worldwide/