

Betriebsanleitung
optoNCDT ILR2250

ILR2250-100 ILR2250-100-H ILR2250-100-IO Laser-Distanzmessgerät Berührungsloser laseroptischer Distanzsensor

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101

73037 Göppingen / Deutschland

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 e-mail info@micro-epsilon.de www.micro-epsilon.de

Inhalt

1	Sicherheit	5
11	Verwendete Zeichen	
1.2	Warnhinweise	
1.3	Hinweise zur Produktkennzeichnung	
	1.3.1 CE-Kennzeichnung	6
	1.3.2 UKCA-Kennzeichnung	6
1.4	Bestimmungsgemäße Verwendung	
1.5	Bestimmungsgemaßes Umfeld	6
2.	Lasersicherheit	7
3.	Funktionsprinzip, Technische Daten	
3.I 2.0	Kurzbeschreibung	ö ö
3.3	Messpiritzp Beariffsdefinition Analogausgang Weg	0 8
3.4	Technische Daten	
	1. Second	10
4. ⁄ 1	Lieferung	
4.2	Lagerung	
5.	Installation und Montage	
5.1	Hinweise für den Betrieb	
	5.1.1 nellektorisgildu del Messoberlindorle	۱۱ ۱۹
	5.1.2 East nervour messer, windesignobe wessobjekt	
	5.1.3.1 Fremdlicht	
	5.1.3.2 Temperatureinflüsse	
	5.1.3.3 Mechanische Schwingungen	
	5.1.3.4 Bewegungsunschärfen	
	5.1.3.5 Winkeleinflüsse	
5.2	Mechanische Befestigung	
	5.2.1 Sensormontage	
	5.2.2 Annung Messbereich	
	5.2.3 neiekuminage	
53	Anzeigeelemente	
5.4	Elektrische Anschlüsse ILB2250-100	
	5.4.1 Anschlussmöglichkeiten	
	5.4.2 Anschlussbelegung	
	5.4.3 Versorgungsspannung	
	5.4.4 Analogausgang	
	5.4.5 RS422 (mit USB-Konverter IF2001/USB)	
	5.4.0 Inggereingang	
55	5.4.7 Schaldusgally Elektrische Anschlüsse II 82250-100-10	20 21
0.0	5.5.1 Anschlussmöglichkeiten	
	5.5.2 Anschlussbelegung	
	5.5.3 Versorgungsspännung	
~	Batrick II BOOFO 100	00
0. 6 1	Bellieb ILR2250-100 Heretellung der Betriebsbereitschaft	
62	Redienung untels sensortOOI	
6.3	Datenaufnahme, Presets	
6.4	Auswertebereich maskieren. ROI	
6.5	Triggerung	
	6.5.1 Allgemein	
	6.5.2 Triggerung der Messwertaufnahme	
~ ~	6.5.3 Triggerung der Messwertausgabe	
6.6	Analogausgang	
	6.6.1 Skallerung.	
67	0.0.2 Derectinung messweit aus Stromausgang	20 20
6.8	Messwerthaltemodus, Fehlerbehandlung	30
6.9	Systemeinstellungen	
	6.9.1 Einstellungen speichern	
	6.9.2 Sprache	
6.10	ILR2250-100-H mit Klimafunktion	
7	Batriah II B2250-100-IO	30
7.1	Det tel ILn 2230-100-10	
72	Redienung mittels IO-1 ink	
7.3	Prozessdaten	
7.4	Gerätedaten	
-		
8.	Digitale Schnittstelle RS422	
0.1 0 0	vorbernerkungen	
0.∠ 8.3	Rücksetzen der Baudrate	
0.0		

9.	Reinigung	35				
10.	Softwareunterstützung mit MEDAQLib	35				
11.	Haftungsausschluss	36				
12.	Service, Reparatur					
13.	Außerbetriebnahme, Entsorgung	36				
Anhang						
A 1	Optionales Zubehör	37				
Δ2	Werkseinstellung	38				
A 2.1	ILB2250-100	38				
A 2.2	ILR2250-100-IO	38				
_						
A 3	ASCII-Kommunikation mit Sensor	39				
A 3.1		39				
A 3.2	Upersicht Betenle	40				
A 3.3		41				
	A 3.3.2 GETINEO Sensorinformation	41				
	A333 GETTEMP	41				
	A 3.3.4 RESET. Sensor booten	42				
	A 3.3.5 RESETCNT, Zähler zurücksetzen	42				
	A 3.3.6 PRINT, Sensoreinstellungen	42				
	A 3.3.7 PRINT ALL	42				
A 3.4	Triggerung	42				
	A 3.4.1 IHIGGER	42				
	A 3.4.2 I RIGGERAT	42				
		43				
	A 3.4.4 INIGGENCOUNT	40				
A 3 5	Schnittstellen	43				
//0.0	A 3 5 1 BAUDBATE	43				
	A 3.5.2 ERROROUT1/2/3. Schaltausgang aktivieren	43				
	A 3.5.3 ERRORLEVELOUT1/2/3	43				
	A 3.5.4 ERRORLIMITCOMPARETO1/2/3	43				
	A 3.5.5 ERRORLIMITVALUES1/2/3	44				
	A 3.5.6 ERRORHYSTERESIS1/2/3	44				
	A 3.5.7 ERROUTHOLD	44				
A 3 6	A 3.3.8 UT HOLD, Fenerbenandiung.	44				
A 3.0		44 44				
	A 3.6.2 BASICSETTINGS	44				
	A 3.6.3 SETDEFAULT Werkseinstellungen	45				
	A 3.6.4 LASER	45				
	A 3.6.5 ROI, Auswertebereich	45				
A 3.7	Datenausgabe	45				
	A 3.7.1 OUTPUT	45				
	A 3.7.2 GETOUTINFO RS422, Abtrage Datenauswahl	45				
	A 3.7.3 UUTADD KS422, Datenauswani zusatzliche Werte	45				
A 2 8	A 3.1.4 AIVALUGSUALEMAINGE	40 46				
A 0.0		-+0				

1. Sicherheit

1.1 Verwendete Zeichen

Die Systemhandhabung setzt die Kenntnis der Betriebsanleitung voraus.

In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet:

	Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verletzungen führt, falls diese nicht vermieden wird.
HINWEIS	Zeigt eine Situation an, die zu Sachschäden führen kann, falls diese nicht vermieden wird.
⇒	Zeigt eine ausführende Tätigkeit an.
i	Zeigt einen Anwendertipp an.
Messung	Zeigt eine Hardware oder eine(n) Schaltfläche/Menüeintrag in der Software an.

1.2 Warnhinweise

Schließen Sie die Spannungsversorgung nach den Sicherheitsvorschriften für elektrische Betriebsmittel an.

- > Verletzungsgefahr
- > Beschädigung oder Zerstörung des Sensors

Vermeiden Sie Stöße und Schläge auf den Sensor.

HINWEIS

> Beschädigung oder Zerstörung des Sensors

Die Versorgungsspannung darf angegebene Grenzen nicht überschreiten.

> Beschädigung oder Zerstörung des Sensors

Befestigen Sie den Sensor ausschließlich an den vorhandenen Montagebohrungen/Gewindelöchern auf einer ebenen Fläche, Klemmungen jeglicher Art sind nicht gestattet.

> Beschädigung oder Zerstörung des Sensors

Schützen Sie die Kabel vor Beschädigung.

- > Beschädigung oder Zerstörung des Sensors
- > Ausfall des Messgerätes

Nehmen Sie den Sensor nicht in Betrieb, wenn optische Teile beschlagen oder verschmutzt sind

> Ausfall des Messgerätes

Berühren Sie die Linsen und Schutzscheiben nicht mit den Fingern. Entfernen Sie eventuelle Fingerabdrücke sofort mit reinem Alkohol und einem sauberen Baumwolltuch ohne Schlieren.

- > Beschädigung oder Zerstörung des Sensors
- > Ausfall des Messgerätes

1.3 Hinweise zur Produktkennzeichnung

1.3.1 CE-Kennzeichnung

Für das Produkt gilt:

- Richtlinie 2014/30/EU ("EMV")
- Richtlinie 2011/65/EU ("RoHS")

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und der jeweils anwendbaren harmonisierten europäischen Normen (EN). Das Produkt ist ausgelegt für den Einsatz im Industrie- und Laborbereich.

Die EU-Konformitätserklärung und die technischen Unterlagen werden gemäß den EU-Richtlinien für die zuständigen Behörden bereitgehalten.

1.3.2 UKCA-Kennzeichnung

Für das Produkt gilt:

- SI 2016 No. 1091 ("EMC")
- SI 2012 No. 3032 ("RoHS")

Produkte, die das UKCA-Kennzeichen tragen, erfüllen die Anforderungen der zitierten Richtlinien und der jeweils anwendbaren Normen. Das Produkt ist ausgelegt für den Einsatz im Industrie- und Laborbereich.

Die UKCA-Konformitätserklärung und die technischen Unterlagen werden gemäß den UKCA-Richtlinien für die zuständigen Behörden bereitgehalten.

1.4 Bestimmungsgemäße Verwendung

- Das optoNCDT ILR2250 ist für den Einsatz im Industrie- und Laborbereich konzipiert. Es wird eingesetzt zur
 - Weg- Abstands-, Positionsmessung
 - Qualitätsüberwachung und Dimensionsprüfung
- Das System darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe Kap. 3.4.
- Das System ist so einzusetzen, dass bei Fehlfunktionen oder Totalausfall des Systems keine Personen gefährdet oder Maschinen und andere materielle Güter beschädigt werden.
- Bei sicherheitsbezogener Anwendung sind zusätzlich Vorkehrungen für die Sicherheit und zur Schadensverhütung zu treffen.

1.5 Bestimmungsgemäßes Umfeld

- Schutzart: IP65 (gilt nur bei angestecktem Sensorkabel)

Die Schutzart gilt nicht für optische Eingänge, da deren Verschmutzung zur Beeinträchtigung oder Ausfall der Funktion führt.

- Temperaturbereich:
 - ■Betrieb: -10 ... +50 °C
 - ■Lagerung: -20 ... +70 °C
- Luftfeuchtigkeit: 5 ... 95 % RH (nicht kondensierend)
- Umgebungsdruck: Atmosphärendruck

2. Lasersicherheit

Der optoNCDT ILR2250 arbeitet mit einem Halbleiterlaser der Wellenlänge 655 nm (sichtbar/rot).

Die Sensoren sind in die Laserklasse 2 eingeordnet. Der Laser wird gepulst betrieben, die maximale optische Leistung ist \leq 1 mW. Die Pulsfrequenz hängt von der eingestellten Messrate ab (1 ... 20 Hz). Die Pulsdauer der Peaks wird abhängig von der Messrate und Reflektivität des Messobjektes geregelt und kann 0,2 ... 0,8 ns betragen.

Laserstrahlung. Irritation oder Verletzung der Augen möglich. Schließen Sie die Augen oder wenden Sie sich sofort ab, falls die Laserstrahlung ins Auge trifft.

Beim Betrieb der Sensoren sind einschlägige Vorschriften zu beachten. Danach gilt:

- Bei Lasereinrichtungen der Klasse 2 ist das Auge bei zufälliger, kurzzeitiger Einwirkung der Laserstrahlung, d.h. Einwirkungsdauer bis 0,25 s, nicht gefährdet.
- Lasereinrichtungen der Klasse 2 dürfen Sie deshalb ohne weitere Schutzmaßnahmen einsetzen, wenn Sie nicht absichtlich länger als 0,25 s in den Laserstrahl oder in spiegelnd reflektierte Strahlung hineinschauen.
- Da vom Vorhandensein des Lidschlussreflexes in der Regel nicht ausgegangen werden darf, sollte man bewusst die Augen schließen oder sich sofort abwenden, falls die Laserstrahlung ins Auge trifft.

Laser der Klasse 2 sind nicht anzeigepflichtig und ein Laserschutzbeauftragter ist nicht erforderlich.

Am Sensorgehäuse ist folgendes Hinweisschild (Vorderseite) siehe Abb. 1, angebracht:

Abb. 1 Laserwarn- und Laserhinweisschild, optoNCDT ILR2250-100, IEC

Abb. 2 Laserwarn- und Laserhinweisschild, optoNCDT ILR2250-100 für Deutschland

Das deutsche Laserhinweisschild, siehe Abb. 2, ist beigelegt, ebenso ein zusätzliches internationales Laserhinweisschild.

• Wenn beide Hinweisschilder im angebauten Zustand verdeckt sind, muss der Anwender selbst für zusätzliche Hinweisschilder an der Anbaustelle sorgen.

Der Betrieb des Lasers wird optisch durch die LED Signal am Sensor angezeigt, siehe Kap. 5.3.

Die Gehäuse des optoNCDT ILR2250 dürfen nur vom Hersteller geöffnet werden, siehe Kap. 11.

Für Reparatur und Service sind die Sensoren in jedem Fall an den Hersteller zu senden.

Beachten Sie nationale Vorgaben, z. B. die für Deutschland gültige Arbeitsschutzverordnung zu künstlicher optischer Strahlung - OStrV.

Empfehlungen für den Betrieb von Sensoren, die Laserstrahlung im sichtbaren oder nicht sichtbaren Bereich emitieren finden Sie u. a. in der DIN EN 60825-1 (von 07/2022).

3. Funktionsprinzip, Technische Daten

3.1 Kurzbeschreibung

Das optoNCDT ILR2250 ist ein Laser-Distanzmessgerät, welches Entfernungen im Bereich von 0,05 m bis 150 m berührungslos und punktgenau misst. Durch den roten Lasermesspunkt ist das Messziel eindeutig zu identifizieren. Die maximale Reichweite ist abhängig vom Reflexionsvermögen und der Oberflächenbeschaffenheit des Messziels.

Das Gerät arbeitet auf Basis der Phasenvergleichsmessung. Dabei wird hochfrequent moduliertes Laserlicht ausgesendet. Das vom Messobjekt diffus reflektierte und phasenverschobene Licht wird mit dem Referenzsignal verglichen. Aus dem Betrag der Phasenverschiebung lässt sich die Distanz millimetergenau bestimmen.

Das Auslösen einer Distanzmessung kann auf verschiedene Arten erfolgen:

- Senden eines Kommandos mittels PC oder einer anderen Steuereinheit über eine serielle Schnittstelle RS422
- Durch externe Triggerung
- Nutzung der Autostart-Funktion

3.2 Messprinzip

Das Licht im sichtbaren Wellenlängenbereich wird mit günstig gewählten Frequenzen so moduliert, dass aus dem in der zu messenden Strecke enthaltenen Vielfachen der jeweiligen Modulationswellenlänge und aus der Größe des Restintervalles die genaue Streckenlänge abgeleitet werden kann. Die Messung des Restintervalles erfolgt mittels analoger Phasenvergleichsverfahren. Zur Ermittlung der Streckenlänge wird mit mehreren Modulationswellen gearbeitet.

Abb. 3 Auswertung der Phasenverschiebung zur Abstandsbestimmung

- MBA Messbereichsanfang, minimaler Abstand zwischen Sensor und Messobjekt
- MBE Messbereichsende (Messbereichsanfang + Messbereich), maximaler Abstand zwischen Sensor und Messobjekt
- MB Messbereich

3.4 Technische Daten

Modell			ILR2250-100 ILR2250-100-H ILR2250-100-IO				
Artikelnummer			7112015	7112016			
Mess- MBA			0,05 m				
bereich ¹ Schwarz 6 % MBE			30 m				
	0 (0.0)	MBA	0,05 m				
	Grau 40 % -	MBE	70 m				
		MBA	0,05 m				
	Weiß 80 % -	MBE	100 m				
		MBA		35 m			
	Reflektorfolie ²	MBE		150 m			
Masausta				00.11-			
Nessrate				20 HZ			
Autosung				0,1 mm			
Linearitat				< ±1 mm °			
Reproduzie	erbarkeit ⁴		10 150 00	< 300 µm	10		
Iemperatur	kompensation		-10 +50 °C	-40 +65 °C	-10 +50 °C		
Lichtquelle			Ha	albleiterlaser < 1 mW, 655	o nm (rot)		
Typische Le	ebensdauer			50.000 h			
Laserklasse	e		Klas	se 2 nach DIN-EN 60825-	1: 2022-07		
Zulassiges	Fremdlicht			50.000 lx			
Versorgung	jsspannung		10 30 VDC	24 30 VDC	10 30 VDC		
Leistungsa	ufnahme		< 1,5 W (24 V)	< 10 W (24 V)	< 1,5 W (24 V)		
Signaleingang			Trigger -				
Digitale Schnittstelle			RS422 / USB ⁵ / PROF	INET ⁵ / EtherNet/IP ⁵	IO-Link 1.1; Prozessdaten, Parametrierung, Diagnose		
Analogausgang			4 2 (16 bit; frei skalierbar inne	0 mA rhalb des Messbereichs)	-		
Schaltausg	ang		Q1 / Q2 / Q3 (k	configurierbar)	Q1 / Q2 / Q3 (konfigurierbar) in IO-Link Prozessdaten enthalten		
Anschluss			Versorgung/Signal: M16 dung 12-polig (Anschlus	Versorgung/Signal: M12- Schraub-Steckverbindung 5-polig (Anschlusskabel siehe Zubehör)			
Montage			Verschraubung und Justage an Sensor-Bodenplatte				
Temperatur	- Lag	gerung	-2	5 +70 °C (nicht konder	nsierend)		
bereich		Potriob	-10 +50 °C	-40 +65 °C	-10 +50 °C		
		Jeinen	(nicht kondensierend)	(nicht kondensierend)	(nicht kondensierend)		
Schock (DIN-EN 60068-2-29)			15 g / 6 ms in 3 Achsen, in 3 Richtungen, je 1000 Schocks				
Vibration (DIN-EN 60068-2-6)			15 g / 10 500 Hz in 3 Achsen, je 10 Zyklen				
Schutzart (DIN-EN 60529)			IP65				
Material			Aluminiumgehäuse				
Gewicht			ca. 265 g	ca. 270 g	ca. 265 g		
Bedien- un	d Anzeigeelemer	nte	5x LED für Power, Sig-	5x LED für Power, Sig-	5x LED für Power, Signalstärke		
			nalstärke und	nalstärke, Heizbetrieb	und Schaltausgänge		
Pagardare	Mortinada				4 Magage antificates Detricts		
besondere Merkmale			4 messspezifische sensor	modi über IO-Link einstellbar			

 $\mathsf{MBA}=\mathsf{Messbereichsanfang}, \mathsf{MBE}=\mathsf{Messbereichsende}$

Die angegebenen Daten gelten für eine konstante Raumtemperatur von 20°C, Sensor ständig in Betrieb. Gemessen auf weiße, diffus reflektierende Oberfläche (Referenz-Keramik)

1) Abhängig von Reflexionsvermögen des Zieles, Fremdlichtbeeinflussung und atmosphärische Bedingungen

2) ILR-RF210 Reflektorfolie 210 x 297 mm; Art. 7966058

3) Gemessen im Bereich von 0,05 \dots 20 m; statistische Streuung 2σ

- 4) Messfrequenz 20 Hz, gleitender Mittelwert 10
- 5) Anbindung über Schnittstellenmodul (siehe Zubehör)

optoNCDT ILR2250

4. Lieferung

4.1 Lieferumfang

1 Sensor ILR2250-100

- 1 Montageanleitung
- 1 Laserhinweisschild deutsch
- 1 Laserhinweisschild IEC
- 1 Montageschraubenset bestehend aus:
 - 2x Zylinderkopfschrauben, Innensechskant M4x12
 - 2x Federscheiben M4
 - 4x Gewindestifte Innensechskant M4x6

1 PC2250-0,3 IO-Link Adapterkabel (bei Lieferung eines Sensors ILR2250-100-IO)

- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

Optionales Zubehör finden Sie im Anhang, siehe Kap. A 1.

4.2 Lagerung

Temperaturbereich Lager: -25 ... +70 °C

Luftfeuchtigkeit: 5 ... 95 % RH (nicht kondensierend)

5. Installation und Montage

5.1 Hinweise für den Betrieb

5.1.1 Reflexionsgrad der Messoberfläche

Der Sensor optoNCDT ILR2250-100 ist ein optisches System, mit dem im Millimeter-Bereich gemessen wird. Der Sensor funktioniert auf Basis des Phasenvergleichsverfahrens und wertet die direkten und diffusen Reflexionen des zurückgeworfenen Laserstrahls aus.

Abb. 4 Reflexionsgrad der Messoberfläche

Der Sensor ILR2250-100 ist in der Lage, mit Reflexionsgraden zwischen 6 % und 100 % zu arbeiten.

Eine Aussage über die erwartete Signalstärke verschiedener Oberflächen kann aufgrund der vielen Umwelteinflüsse nicht getroffen werden. Die Farbe, Oberflächenbeschaffenheit des Messziels sowie auch einstrahlendes Fremdlicht und andere Wettereinflüsse können sich auf die Signalqualität auswirken.

Farbeindruck	Reflexion	Maximale Reichweite	Vergleichbares Material
Schwarz	6 - 15 %	30 Meter	Pappe, Papier, Stoff, Filz
Grau	30 - 50 %	70 Meter	Beton, graue Hallenwand
Weiß	80 - 90 %	100 Meter	Weißes Papier, helle Wand
Reflektor	100 %	150 Meter	ILR-RF210 Reflektorfolie

Die zu erwartende Signalqualität lässt sich anhand der Farbe des Messziels eingrenzen.

Für dunkle, spiegelnde und weit entfernte Ziele wird der AUTO Messmodus empfohlen. Dieser Messmodus optimiert die Messfrequenz des Sensors, abhängig von der Signalqualität, und liefert dadurch die besten Ergebnisse, auch unter schwierigen Bedingungen.

5.1.2 Laserfleckdurchmesser, Mindestgröße Messobjekt

Der Laserfleckdurchmesser erhöht sich mit zunehmendem Abstand (Weg). Beachten Sie dies bei der Auswahl/Größe des Messobjektes. Das Messobjekt benötigt als Mindestgröße die dreifache Größe des Laserfleckes.

Abb. 5 Laserfleckmaße und Messobjektgröße in Abhängigkeit zum Abstand optoNCDT ILR2250

5.1.3 Fehlereinflüsse

5.1.3.1 Fremdlicht

Die Sensoren der Reihe optoNCDT ILR2250 besitzen durch ihre eingebauten optischen Interferenzfilter eine sehr gute Fremdlichtunterdrückung. Bei stark spiegelnden Messobjekten kann es aufgrund der zu starken Reflexion jedoch zu Störungen durch Überstrahlung kommen. In diesen Fällen empfiehlt sich das Anbringen einer weniger stark spiegelnden Oberfläche. Ein Idealziel ist weiß, leicht glänzend mit glatter Oberfläche.

Bei direkt einstrahlendem Fremdlicht in den Sensor oder auf das Messobjekt empfiehlt sich das Anbringen einer Abschirmung dieser Bereiche.

5.1.3.2 Temperatureinflüsse

Bei Inbetriebnahme ist eine Einlaufzeit von mindestens 5 Minuten erforderlich, um eine gleichmäßige Temperaturausbreitung im Sensor zu erreichen.

Schnelle Temperaturänderungen werden durch die dämpfende Wirkung der Wärmekapazität des Sensors nur verzögert erfasst.

5.1.3.3 Mechanische Schwingungen

Soll mit dem Sensor eine hohe Genauigkeit erreicht oder auch eine hohe Reichweite gemessen werden, ist besonderes Augenmerk auf eine stabile bzw. schwingungsgedämpfte Sensor- und Messobjektmontage zu richten.

5.1.3.4 Bewegungsunschärfen

Eine homogene Verfahrbewegung bis maximal 1,6 m/s ist ohne Ausfälle möglich. Bei schneller bewegten Messobjekten oder schwach reflektierenden Messobjekten kann es auch zu Bewegungsunschärfen (Verwischen) kommen.

5.1.3.5 Winkeleinflüsse

Verkippungswinkel des Messobjektes bei diffuser Reflexion sowohl um die X- als auch um die Y-Achse von kleiner 5° sind nur bei Oberflächen mit stark direkter Reflexion störend.

Prinzipiell unterliegt das Winkelverhalten bei der Laser-Distanzmessung auch dem Reflexionseigenschaften der Messobjektoberfläche.

5.2 Mechanische Befestigung

5.2.1 Sensormontage

• Achten Sie bei der Montage und im Betrieb auf eine sorgsame Behandlung des Sensors.

Montieren Sie den Sensor über 4 Schrauben M4 an der Sensorbodenplatte.

Zusätzlich kann über 4 Gewindestifte eine Justage des Sensors vorgenommen werden.

Der Sensor wird durch einen sichtbaren Laserstrahl auf das Zielobjekt ausgerichtet. Zur Ausrichtung des Sensors sind auch die Hinweise für den Betrieb, siehe Kap. 5.1, zu beachten.

Trifft der Laserstrahl nicht senkrecht auf die Objektoberfläche auf, sind Messunsicherheiten nicht auszuschließen.

Durchsteckverschraubung ¹					
Durchstecklänge	Einschraubtiefe	Anzahl	Schraube	Drehmoment	
5 mm	min 10 mm	4	M4 ISO 4762-A2	1,7 Nm bei Festigkeitsklasse 70 2,3 Nm bei Festigkeitsklasse 80	

Abb. 6 Montagebedingungen

- Befestigen Sie den Sensor ausschließlich an den vorhandenen Durchgangsbohrungen auf einer ebenen Fläche.
- 1 Klemmungen jeglicher Art sind nicht gestattet. Überschreiten Sie nicht die Drehmomente.

Abb. 7 Maßzeichnung optoNCDT ILR2250-100, Abmessungen in mm

- Bringen Sie den Sensor so an, dass die Anschlüsse und Anzeigeelemente nicht verdeckt werden.
- l Neben den Kühlrippen auf der linken und rechten Seite empfehlen wir 2 3 Zentimeter Abstand einzuhalten.

1) Empfehlung: Prüfung unter Einsatzbedingungen notwendig!

5.2.2 Anfang Messbereich

Bei Sensoren der Reihe ILR2250 ist der Beginn des Messbereiches vor den Sensor gelegt. Bezugspunkt ist die vordere Gehäusekante am Sensorgehäuse.

5.2.3 Reflektormontage

Der Sensor misst die Entfernung zu bewegten und statischen Objekten:

- Im Bereich von 0,05 m ... 100 m auf diffuse Oberflächen
- Zwischen 35 und 150 m auf Reflektoren (z.B. ILR-RF210, Scotchlight von 3M etc.)
- Die Ausrichtung kann über den Messlaser erfolgen. Verfahren Sie bei der Ausrichtung wie folgt:

Positionieren Sie den Sensor im Nahbereich zum Reflektor (zum Bespiel < 1 m).

Der sichtbare Lichtfleck des Messlasers ist mittig auf den Reflektor ausgerichtet.

- Positionieren Sie den Sensor in der größten Reichweite zum Reflektor.
- Prüfen Sie die Mittenlage des Messlasers auf dem Reflektor und stellen Sie diese gegebenenfalls ein.

Der Spot muss mit seinem Zentrum über die gesamte Messstrecke immer in der Mitte des Reflektors liegen.

Messobjekt (Reflektor) und Sensor dürfen maximal 5° zueinander verkippt sein.

5.2.4 Vertikale und horizontale Korrektur Laserlinie

Das Lasermodul unterliegt Fertigungstoleranzen. Diese bedingt gegebenenfalls Abweichungen der Laseraustrittsachse im Verhältnis zur Sensorachse.

Abb. 9 Fertigungstoleranz Laseraustritt im Verhältnis zur Sensorachse

Ablauf einer Korrektur

- Verschieben Sie Sensor und Messobjekt/Reflektor auf maximalen Abstand zueinander.
- Lösen Sie die Montageschrauben in den Langlöchern.

Vertikale Korrektur Laseraustritt

Schrauben Sie die im Lieferumfang enthaltenen Gewindestifte in die Montagebohrungen ein.

Sie heben/senken damit den Laseraustritt.

Horizontale Korrektur Laseraustritt

Drehen Sie den Sensor.

Die Größe der Langlöcher ist in der Regel ausreichend für eine horizontale Korrektur des Laseraustritts.

Verkippen bzw. drehen Sie den Sensor bis der Laser das/den Messobjekt/Reflektor mittig trifft.

Ziehen Sie die Montageschrauben in den Langlöchern fest.

5.3 Anzeigeelemente

LED	Funktion	Anzeige	Zustand	
Out 1	Schaltausgang 1	Aus	Schaltausgang inaktiv	LEDs Out 1 - 3
		Weiß	Schaltausgang aktiv	
Out 2	Schaltausgang 2	Aus	Schaltausgang inaktiv	John UE
		Weiß	Schaltausgang aktiv	
Out 3	Schaltausgang 3	Aus	Schaltausgang inaktiv	
		Weiß	Schaltausgang aktiv	
Signal	Reflexionsstärke	Grün	Signal sehr gut	
		Gelb	Signal ausreichend	
		Rot	Schwaches Signal ¹ /Fehler	
Power	Betriebsbereitschaft	Aus	Keine Versorgungsspannung	LED LED Power
		Grün	Betriebsbereit	STOWE
		Gelb	Aufwärmphase ²	

Die Signal LED gibt die Reflexionsstärke einer Messung an. Diese LED leuchtet generell, wenn eine Messung gestartet wird.

¹⁾ Verringerte Messgenauigkeit und Messfrequenz möglich

²⁾ Nur für Sensoren der Modellreihe ILD2250-100-H mit integrierter Klimafunktion

5.4 Elektrische Anschlüsse ILR2250-100

5.4.1 Anschlussmöglichkeiten

Abb. 10 Anschlussbeispiele am ILR2250

Am Sensor können die verschiedenen Peripheriegeräte angeschlossen werden.

Die Konverter IF2001/USB, IF2004/USB und IF2008/ETH liefern auch die Versorgungsspannung (24 V DC) des Sensors. Die Schnittstellenmodule IF2030/PNET und IF2030/ENETIP liefern auch die Versorgungsspannung (24 V DC) des Sensors.

Die Spannungsversorgung der Konverter und Schnittstellenmodule erfolgt z. B. durch das optional erhältliche Netzteil PS 2020.

5.4.2 Anschlussbelegung

Der Steckverbinder-Anschluss befindet sich auf der Rückseite des Sensors. Es handelt sich dabei um einen 12-poligen Rundsteckverbinder (Flanschstecker) der Serie 723 der Firma Binder.

Der Einsatz dieses Steckverbinders garantiert eine optimale Schirmung sowie eine hohe IP-Schutzklasse. Als Gegenstück benötigen Sie eine entsprechende Kabelbuchse mit Schirmring.

Optional erhältlich sind verschieden konfektionierte Kabel PC2250 mit offenen Enden, siehe Kap. A 1. Die optional erhältlichen Versorgungs-/Ausgangskabel PC2250-x und PC2250/90-x sind schleppkettentauglich und besitzen folgende Biegeradien:

- 47 mm (einmalig)
- 116 mm (ständig)

HINWEIS Vermeiden Sie freiliegende Kabelenden. Sie verhindern damit Kurzschlüsse. Beschalten von Ausgängen mit Eingangssignalen kann den Sensor beschädigen!

Signal	PC2250-x			Bemerkung, Beschaltung		
Sensor	Pin	Adernfarbe	Erläuterung	-		
RX+	Α	weiß	RS422-Eingang	Intern mit 120 Ohm abge-		
RX-	В	braun	(symmetrisch)	schlossen	JO OM OF	
TRIG	С	grün	Schalteingang	Triggereingang, $t_i > 2 \text{ ms}$	OH OG	
I _{out}	D	gelb	Analogausgang	4 20 mA	Ansicht Lötseite 12-pol Kabel-	
TX -	Е	grau	RS422-Ausgang	Empfänger mit 120 Ohm	buchse	
TX+	F	rosa	(symmetrisch)	abschließen	Versorgung und Signal Buchse M16x0.75: 12-pol.	
+ <i>U</i> _B	G	rot	Versorgungsspannung	10 30 VDC, typ. 24 VDC	·········	
OUT1	н	schwarz	Schaltausgang 1	Schaltverhalten programmier- bar: NPN, PNP, Push-Pull,		
OUT2	К	grau/rosa	Schaltausgang 2	Push-Pull negiert I _{max} = 50 mA		
OUT3	М	blau	Schaltausgang 3	geschützt gegen Verpolung, Überlast und Übertemperatur		
GND	L	rot/blau	Versorgungsmasse	Bezugspotential auch für Schaltausgänge		
GND	J	violett	Signalmasse	Bezugspotential für Analog- ausgang		

Abb. 11 Anschlussbelegung Versorgung und Signal, 12-pol. Steckverbinder

Die Masse-Leitungen sind intern zusammengeführt und sind Bezugspotential für alle nachfolgend angegebenen Spannungswerte. Die Grenzwerte der Spannungen, Belastungen und logischer Pegel entsprechen den Normen der RS422. Alle Ausgänge sind dauerkurzschlussfest ausgelegt.

5.4.3 Versorgungsspannung

Nennwert 24 VDC (10 ... 30 V, P < 5,5 W (max. für Out1 ... Out3, I out Messmodus aktiv)

Schalten Sie das Netzteil erst nach Fertigstellung der Verdrahtung ein.

Verbinden Sie die Eingänge G (rot) und L (rot/blau) am Sensor mit einer 24 V-Spannungsversorgung.

G'	Sensor	PC2250-x	Erläuterung
30 VDC	Pin	Adernfarbe	
T : !	G	rot	U _B
	L	rot/blau	Versorgungsmasse

Abb. 12 Anschluss Versorgungsspannung

Spannungsversorgung nur für Messgeräte, nicht gleichzeitig für Antriebe oder ähnliche Impulsstörquellen verwenden. MICRO-EPSILON empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020, siehe Kap. A 1, für den Sensor.

5.4.4 Analogausgang

Der Sensor stellt einen Stromausgang 4 ... 20 mA zur Verfügung

- Der Ausgang darf nicht dauerhaft im Kurzschlussbetrieb ohne Lastwiderstand betrieben werden.
- 1 Der Kurzschlussbetrieb führt dauerhaft zur thermischen Überlastung und damit zur automatischen Überlastabschaltung des Ausgangs.
- **Verbinden Sie die Eingänge** D (gelb) und J (violett) am Sensor mit einem Messgerät.

	Sensor Pin	Kabelfarbe PC2250-x	Bemerkung
$\begin{bmatrix} 10 \\ 30 \text{ VDC} \end{bmatrix} \stackrel{H}{=} \stackrel{R_{i}}{\bigcirc} \begin{bmatrix} R_{i} \\ P_{B} \end{bmatrix} \stackrel{H}{=} \stackrel{R_{i}}{=} C_{i}$	D	gelb	Analogausgang
	J	violett	Signalmasse

Abb. 13 Beschaltung Analogausgang

Eigenschaften Analogausgang						
- 4 20 mA	- Verhalten bei Fehlermeldung: 3 mA	Bürde R _B < U _B - 1 V / 20 mA				
- R _i 30 Ohm	- Genauigkeit: 0,1 % d.M.	@10 V: <i>R</i> _B < 450 Ohm				
- Distanzbereichsgrenzen einstellbar	- Kurzschlussicher	@24 V: R _B < 1150 Ohm				
- Auflösung: 16 Bit DA-Wandler		@30 V: R _B < 1450 Ohm				

Der in der Leitung eingeprägte Strom ist proportional zur gemessenen Distanz. Details dazu finden Sie im Bereich Analogausgang, siehe Kap. 6.6.

Die Messwertausgabe über den Analogausgang erfolgt immer.

1

5.4.5 RS422 (mit USB-Konverter IF2001/USB)

Die RS422-Schnittstelle kann sowohl zur Konfiguration als auch zur permanenten Datenübertragung, auch über größere Entfernungen, genutzt werden. Sie gilt als störsichere, industrietaugliche Schnittstelle. Bei Verwendung von paarweise verdrilltem Kabel lassen sich Distanzen bis zu 1200 m realisieren.

Für die Verbindung zwischen Sensor und PC müssen die Leitungen gekreuzt werden.

 Trennen beziehungsweise verbinden Sie die Sub-D-Verbindung zwischen RS422 und USB-Konverter nur im spannungslosen Zustand.

Eigenschaften

- Maximale Eingangsspannung RX+, RX- : ±14 V_{max} intern mit 120 Ohm terminiert.
- Ausgangsspannung TX: ±2 V, differentiell an 2 x 50 Ohm

Parameter

- Baudrate 115200 Baud

- Start/Stopbit: 1
- Datenbits: 8 Handshake: Nein
- Parität: Keine Kommando-Protokoll: ASCII
- In industriellen Anwendungen ist die RS422-Schnittstelle weit verbreitet.
- Verwenden Sie einen geeigneten USB Konverter, z.B. die IF2001/USB, siehe Kap. A 1, falls Ihr PC/Notebook nur mit USB-Schnittstellen ausgestattet ist.

Sens	or	Endgerät, SPS, Konverter IF2001/USB von MICRO-EPSILON	
Pin	Kabelfarbe (Kabel: PC2250-x)	Funktion	Funktion
A	Weiß	Rx+	Tx+
В	Braun	Rx-	Tx-
E	Grau	Tx-	Rx-
F	Rosa	Tx+	Rx+
J	Violett	GND	GND

Triggerimpuls: > 2 ms

wird als Low erkannt.

on auszulösen.

Interner Pull-down-Widerstand, ein offener Eingang

Verbinden Sie den Eingang mit +U_R, um die Funkti-

High ca $2/3 * +U_B$ Low ca $1/3 * +U_B$ Symmetrische Differenzsignale nach EIA-422, nicht galvanisch von der Spannungsversorgung getrennt.

Verwenden Sie ein geschrimtes Kabel mit verdrillten Adern, z. B. PC2250-x.

Abb. 14 Gekreuzte Datenleitungen auf Empfangs- bzw. Sendeseite

5.4.6 Triggereingang

Der Triggereingang ermöglicht die Auslösung einer Distanzmessung durch ein externes Signal in Form eines Spannungsimpulses.

Abb. 15 Prinzipschaltung für das Auslösen einer Triggerung

Konfigurieren Sie das gewünschte Triggerverhalten

- mit dem Programm sensorTOOL
- oder über ASCII-Befehle (z. B. TRIGGER und TRIGGERLEVEL), siehe Kap. A 3.4.1.

Am ILR2250 kann die Anzahl der aufgenommenen Messwerte nach einem Triggerimpuls angegeben werden.

Die Pegeltriggerung starten Sie mit

- +U_B an Triggereingang für H-Pegel Triggerung
- 0V an Triggereingang für L-Pegel Triggerung

5.4.7 Schaltausgang

Das Schaltverhalten (NPN, PNP, Push-Pull, Push-Pull negiert) des Schaltausgangs hängt von der Programmierung ab.

Mit dem digitalen Schaltausgang können zu messende Objekte beispielsweise auf Schwellenüberschreitung überwacht werden. Dazu muss ein Messfenster parametriert werden. Die Parameter für die obere und die untere Schaltschwelle sowie für die Schalthysterese können frei gewählt werden, siehe Kap. 6.7.

Die Ausgänge sind nicht galvanisch getrennt.

Die Ausgänge sind kurzschlussfest.

HT-Logik,

 $I_{max} = 50 \text{ mA},$

 $U_{\rm H, \,max} = 36$ V Sättigungsspannung bei $I_{\rm max} = 50$ mA Low-side < 1 V (Ausgang - GND) bei 50 mA High- side < 1 V (Ausgang - + $U_{\rm R}$) bei 50 mA

Abb. 16 Prinzipschaltung	Schaltausgang
--------------------------	---------------

Schaltverhalten						
Bezeichnung	Ausgang aktiv (Fehler)	Ausgang passiv (kein Fehler)				
NPN (Low side)	GND	ca. +U _H				
PNP (High side)	+U _B	ca. GND				
Push-Pull	+U _B	GND				
Push-Pull, negiert	GND	+ <i>U</i> _B				

Abb. 17 Schaltverhalten Schaltausgang

Der Schaltausgang wird aktiviert bei einem fehlenden Messobjekt, Messobjekt zu nah/zu fern, oder wenn kein gültiger Messwert ermittelt werden kann.

5.5 Elektrische Anschlüsse ILR2250-100-IO

5.5.1 Anschlussmöglichkeiten

Quelle	Kabel/Versorgung	Endgerät
	PC2250-0,3 IO-Link Adapter + PC2250-x IO-Link	HO-Link Master
		Sensorversorgung erfolgt

Abb. 18 Anschlussbeispiel am ILR2250-100-IO

Der IO-Link Master liefert auch die Versorgungsspannung (24 V DC) des Sensors.

5.5.2 Anschlussbelegung

Der Steckverbinder-Anschluss befindet sich auf der Rückseite des Sensors. Es handelt sich dabei um einen 12-poligen Rundsteckverbinder (Flanschstecker) der Serie 723 der Firma Binder. Der Einsatz dieses Steckverbinders garantiert eine optimale Schirmung sowie eine hohe IP-Schutzklasse. Als Gegenstück benötigen Sie eine entsprechende Kabelbuchse mit Schirmring.

Das im Lieferumfang enthaltene Kabel PC2250-0,3 IO-Link Adapter enthält

- eine 12-pol. Kabelbuchse, Anschluss Sensor
- einen 5-pol. Kabelstecker, Anschluss PC2250-x IO-Link

Das optional erhältliche Verlängerungskabel PC2250-x IO-Link enthält beidseitig M12-Stecker bzw. -buchse.

Beide Kabel sind schleppkettentauglich und besitzen folgende Biegeradien:

- 22 mm (einmalig)
- 44 mm (ständig)

Signal	PC2250-0,3 IO-Link Adapter		Erläuterung	PC225	0-x IO-Link
Sensor	Pin	Adernfarbe		Pin	Adernfarbe
NC	Α				·
NC	В				
NC	С				
NC	D				
NC	E				
NC	F				
+ <i>U</i> _B	G	braun	Versorgungsspannung 10 30 VDC, typ. 24 VDC	1	braun
C/Q	н	schwarz	Standard Input/Output	4	schwarz
NC	K				
NC	М				
GND	L	blau	Versorgungsmasse	3	blau
NC	J				
		OB OC OL OD OEO OM OF OH OG			
	M16-Ka	abelbuchse		M12-Ka	abelstecker

Abb. 19 Anschlussbelegung Versorgung und Signal

5.5.3 Versorgungsspannung

Nennwert 24 VDC (10 ... 30 V, P < 4 W

Für den Sensor ILR2250-100-IO erfolgt die Versorgung durch den IO-Link Master.

- Schalten Sie das Netzteil erst nach Fertigstellung der Verdrahtung ein.
- Alternativ verbinden Sie die Eingänge G (braun) und L (blau) am Sensor mit einer 24 V-Spannungsversorgung.

G'	Sensor	PC2250-0,3 IO	-Link Adapter	PC2250-x IO-I	_ink	Erläuterung
30 VDC	Pin	Pin, 12-pol	Pin, 5-pol	Pin	Adernfarbe	
	G	G	1	1	braun	U _B
	L	L	3	3	blau	Versorgungsmasse

Abb. 20 Anschluss Versorgungsspannung

Spannungsversorgung nur für Messgeräte, nicht gleichzeitig für Antriebe oder ähnliche Impulsstörquellen verwenden. MICRO-EPSILON empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020, siehe Kap. A 1, für den Sensor.

6. Betrieb ILR2250-100

6.1 Herstellung der Betriebsbereitschaft

- Montieren Sie den Sensor ILR2250 entsprechend den Montagevorschriften, siehe Kap. 5.1.
- Verbinden Sie den Sensor mit den nachfolgenden Anzeige- oder Überwachungseinheiten und der Spannungsversorgung.

HINWEIS Der Sensor darf nur im stromlosen Zustand mit der Peripherie verbunden werden, also nur bei abgeschalteter Versorgungsspannung.

Der Messlaser startet mit Anlegen der Versorgungsspannung, wenn zuvor im Sensor eine aktive Messung (siehe LASER MEASURE ON) gespeichert wurde.

Der Sensor ist nach ca. 2 s betriebsbereit, die digitale Genauigkeit ist unmittelbar gegeben. Der Sensor benötigt für reproduzierbare Messungen über den Analogausgang eine Einlaufzeit von typisch 5 min.

 Der Sensor kann in einen Autostart-Zustand gebracht werden. Hierzu müssen alle gewünschten Parameter am Sensor eingestellt und gespeichert werden. Wird der Sensor anschließend bei aktiver Messung abgeschaltet nimmt er bei erneuter Verbindung zur Stromversorgung unverzüglich die gespeicherte Messaufgabe wieder auf.

Ist die LED POWER aus, dann fehlt die Versorgungsspannung.

6.2 Bedienung mittels sensorTOOL

Voraussetzung: Der Sensor ist über einen RS422-Konverter mit einem PC/Notebook verbunden, die Versorgungsspannung liegt an.

Das Programm sensorTOOL findet auch über ein Netzwerk angeschlossene Sensoren. Dieses Programm finden Sie online unter https://www.micro-epsilon.de/download/software/sensorTOOL.exe.

Starten Sie das Programm sensorTool und klicken Sie auf die Schaltfläche ever.

Das Programm sucht nun auf den verfügbaren Schnittstellen nach angeschlossenen Sensoren der Reihe ILR2250.

Wählen Sie einen gewünschten Sensor aus. Klicken Sie auf die Schaltfläche Starte Datenaufnahme.

Abb. 21 Hilfsprogramm zur Sensorsuche

Abb. 22 Messansicht im Programm sensorTOOL

Zugriff auf die Funktionen u. a. Triggerung, Schaltausgänge und Analogausgang bekommen Sie über den Reiter Einstellungen.

• Verbindungen	Date:	naufnahn	ne	0.1	Einzelwer	t	8	Einstellun	igen	(j)	Info					Deutsc	h 🛇
optoNCDT ILR2250 Port Nummer: Baudrate: Seriennummer Controller: Softwareversion: → Verbindung trennen	COM3 115200 20070007 0.7.7	<	Datenau Mes Mes Mes Mes Mes Auswert Auswert Auswert Auswert Auswert Auswert Messwe Tempera Trigger Modus Pegel Momenu Anzahl	ifnahme ismodus Ai ismodus Ai ismodus Ai ismodus Pr tebereiche tebereiche tebereichs tethaltemo atur (°C)	utomatik chnell kkurat rāzise ende tart idus NONE HIGH NPUT 214748364	150000,0 0,0 NONE 25.800 ✓ √ 47 ↓	🔹 mn 🔪 nn V 1	n n ÷	Digitalar Schaltm Ausgabi Bereichs Obergre Untergr Hysteres Signalp Analoga Skaliere Skaliere	sgänge odus pegel prüfung nze (mm) er (mm) e (mm) isgel halten für isgang max. Abstand min. Abstand ng	Schaltausga NONE PUSHPULL BOTH 150000,0 0,0 0,0 1 1 2	ing 1	Schaltausgan NONE PUSHPULL BOTH 150000,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	auf Str	Schaltaus NONE PUSHPUI BOTH 15000,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	gang 3 L V Q Q Q Q Q Q Q Q Q Q Q Q Q	~
Bereit																	

Abb. 23 Reiter Einstellungen im Programm sensorTOOL

6.3 Datenaufnahme, Presets

Mit Auswahl eines Messmodus im Bereich Datenaufnahme erfolgt der Wechsel zwischen den gespeicherten Konfigurationen (Presets) für verschiedene Messobjektoberflächen (Targets) und Bewegungsgeschwindigkeit Messobjekt. Die Auswahl eines Targets bewirkt eine vordefinierte Konfiguration der Einstellungen, die für das gewählte Material die besten Ergebnisse erzielt.

Datenaufnahme	Automatik	Empfohlen für Messungen auf schlecht reflektierende oder dunkle Messobjekte. Die Messrate hängt vom Reflexionsgrad des Messobjektes ab. Typisch liegt die Messrate im Bereich von 3 20 Hz.
	Schnell	Geeignet für schnelle Messungen auf bewegte Messobjekte und schnelle Distanz- sprünge. Die Messobjektbewegung beträgt typisch bis zu 1,6 m/s. Die Messwerte werden mit 20 Hz ausgegeben.
	Akkurat	Preset für hohe Genauigkeit und Toleranz bei Distanzänderungen. Die Messrate hängt vom Reflexionsgrad des Messobjektes ab. Typisch liegt die Messrate im Bereich von 3 20 Hz.
	Präzise	Preset für höchste Genauigkeit. Liefert präzise Distanzwerte auf gut reflektierende Ziele. Die Messwerte werden mit 20 Hz ausgegeben.

Wechseln Sie in Das Menü Einstellungen > Datenaufnahme und wählen Sie den gewünschten Messmodus.

Datenaufnahme	
Messmodus Automatik	
O Messmodus Schnell	
O Messmodus Akkurat	
O Messmodus Präzise	
Auswertebereichende	150000,0 🜩 mm
Auswertebereichende Auswertebereichstart	150000,0 ♀ mm 0,0 ♀ mm
Auswertebereichende Auswertebereichstart Messwerthaltemodus	150000,0

Abb. 24 Menü Datenaufnahme, u. a. Auswahl Messmodus

6.4 Auswertebereich maskieren, ROI

Die Maskierung begrenzt den Auswertebereich (ROI - Region of interest) für die Abstandsberechnung. Diese Funktion wird verwendet, um z. B. störende Reflexionen zu unterdrücken.

Abb. 25 Hellblaue Bereiche begrenzen den Auswertebereich

Wechseln Sie in Das Menü Einstellungen > Datenaufnahme **und definieren Sie die Werte für** Auswertebereichstart **und** Auswertebereichende.

Die Wertebereiche für die Parameter

- Obere und untere Grenze (Digitalausgänge),
- Skalierung Analogausgang,

müssen sich innerhalb des Auswertebereiches befinden.

Grau hinterlegte Felder erfordern eine Auswahl.

Dunkel umrandete Felder erfordern die Angabe eines Wertes

6.5 Triggerung

6.5.1 Allgemein

Die Messwertaufnahme und -ausgabe am ILR2250 ist durch ein externes elektrisches Triggersignal oder per Kommando steuerbar. Dabei wird die digitale Ausgabe beeinflusst. Der Messwert zum Triggerzeitpunkt wird zeitversetzt ausgegeben, siehe Kap. 6.5.

- Die Triggerung hat keine Auswirkung auf die vorgewählte Messrate bzw. das Zeitverhalten, so dass zwischen dem Triggerereignis (Pegeländerung) und dem Beginn der Ausgabe immer 4 Zyklen + 1 Zyklus (Jitter) liegen.
- Als externer Triggereingang wird der Eingang TRIG benützt.
- Werkseinstellung: keine Triggerung, der Sensor beginnt mit der Messwertausgabe unmittelbar nach dem Einschalten.
- Die Pulsdauer des "Trigger in"-Signals beträgt mindestens 2 ms.

Die Triggerung der Messwertaufnahme und -ausgabe haben das gleiche Zeitverhalten.

Section 2 Wechseln Sie in Das Menü Einstellungen > Trigger und wählen Sie die gewünschten Triggerbedingungen.

Modus	PULSE	\sim	
Pegel	HIGH	~	
Moment	INPUT	~	
Anzahl	2147483647	A 1	Werte

Abb. 26 Menü Triggerung

Modus	Pulse / Edge / Software / None	Auswahl für die gewünschte Art der Triggerung.
		Pulse = Pegeltriggerung, Edge = Flankentriggerung oder reine
		Softwaretriggerung
		None: keine Triggerung, kontinuierliche Messwertausgabe
Pegel	High / Low	Mit Flankentriggerung und High: steigende Flanke
		Mit Flankentriggerung und Low: fallende Flanke
Moment	Input / Output	Definiert die Art der Triggerung.
		Input = Datenaufnahme, Output = Datenausgabe
Anzahl	Wert	Für die Flanken- und Softwaretriggerung muss die Anzahl an auszu-
		gebenden Messwerten angegeben werden.

Beim Triggern gilt: $f_{T} < f_{M}$

- f_{T} Triggerfrequenz
- f_M Messrate

Als Triggerbedingungen sind implementiert:

Pegel-Triggerung mit Pegel hoch / Pegel niedrig.

Kontinuierliche Messwertaufnahme/-ausgabe, solange der gewählte Pegel anliegt. Danach stoppt die Datenaufnahme/-ausgabe.

Die Pulsdauer muss mindestens eine Zykluszeit betragen. Die darauffolgende Pause muss ebenfalls mindestens eine Zykluszeit betragen.

U₁ = Triggersignal

W = Wegsignal

Abb. 27 Triggerpegel High (oben) mit Analogausgang A₀ und RS422-Ausgangssignal D₀ (unten)

Flanken-Triggerung mit steigender oder fallender Flanke.

Startet Messwertaufnahme, sobald die gewählte Flanke am Triggereingang erkannt wird. Der Sensor gibt bei erfüllter Triggerbedingung die festgelegte Anzahl an Messwerten aus. Wertebereich von 1 ... 2.147.483.646.

Die Pulsdauer muss mindestens 2 ms betragen.

Abb. 28 Triggerflanke HL (oben) mit Analogausgang A_0 und RS422-Ausgangssignal D_0 (unten)

Software-Triggerung. Die Aufnahme der Messwerte wird durch das Kommando TRIGGERSW ausgelöst. Nach dem Triggerereignis gibt der Sensor die zuvor eingestellte Anzahl an Messwerten aus oder startet eine kontinuierliche Messwertausgabe. Die Messwertausgabe kann auch über ein Kommando beendet werden.

6.5.2 Triggerung der Messwertaufnahme

Die Messwertaufnahmetriggerung verarbeitet Messungen, die ab dem Triggerereignis erfasst werden. Zuvor erfasste Messwerte werden verworfen. Die Aufnahmetriggerung hat damit direkten Einfluss auf die weitere Messwertverarbeitung. Der Sensor korrigiert Fehler intern über die Einstellungen in den gespeicherten Konfiguationen. Bei bewegten Zielen und einer Datenaufnahme-Triggerung empfiehlt Micro-Epsilon die Betriebsarten Automatik (Auto) und Schnell (Fast).

6.5.3 Triggerung der Messwertausgabe

Die Berechnung der Messwerte erfolgt fortlaufend und unabhängig vom Triggerereignis. Ein Triggerereignis löst nur die Ausgabe der Werte über die RS422-Schnittstelle aus.

Die Aufnahmetriggerung setzt voraus, dass die Datenaufnahme im Sensor aktiv ist.

6.6 Analogausgang

6.6.1 Skalierung

Der Abstandswert wird über den Analogausgang ausgegeben. Die Auflösung des Analogausganges beträgt 16 Bit.

Ausgabebereich	4 20 mA, Fehlerwert ca. 3 mA				
Skalierung	Standardskalierung	Skalierung auf 50 8000 mm			
	Zwoizweldekolierweg	min Abstand (in mm):	Wert		
	Zweipunkiskallerung	max Abstand (in mm):	Wert		

Für die Zweipunktskalierung gilt:

- min Abstand < max Abstand

Der Wert min Abstand entspricht dem neuen Messbereichsanfang, der Wert max Abstand dem neuen Messbereichsende. Die Zweipunktskalierung ermöglicht eine benutzerdefinierte Angabe des auszugebenden Messbereiches.

Abb. 29 Skalierung des Analogsignals

6.6.2 Berechnung Messwert aus Stromausgang

Stromausgang

Variab	len	Wertebereich	Formel
1 _{OUT}	Strom in mA	[4; 20] Messbereich	(1 1)
MB	Messbereich in mm	{150000} ¹	$d = \frac{(V_{OUT} - 4)}{16} * MB$
d	Abstand in mm		10

Stromausgang mit Skalierung

Variablen		Wertebereich	Formel	
I OUT	Strom in mA	[4; 20] Messbereich		
MB	Messbereich in mm	{150000} ¹	$d = \frac{(l_{OUT} - 4)}{2} * n - m $	
m, n	Teachbereich in mm	[0; MB]	16	
d	Abstand in mm	[m; n]		

1) Der tatsächliche Wert für den Messbereich ist abhängig u. a. vom Reflexionsvermögen des Messobjektes oder der Verwendung einer Reflektorfolie,

Grau hinterlegte Felder erfordern eine Auswahl.

Wert Dunkel umrandete Felder erfordern die Angabe eines Wertes

6.7 Schaltausgänge, Grenzwertüberwachung

Die Schaltausgänge können unabhängig voneinander eingesetzt werden für eine Überwachung

- des Analogausgangs,
- von Grenzwerten.

Schaltausgang 1 Schaltausgang 2 Schaltausgang 3	Schaltmodus	Teach / Limit / None	Teach: Messobjekt befindet sich außerhalb des skalierten Analogbereiches Limit: Abstand größer/kleiner als der Grenzwert None: Schaltausgang nicht aktiv
	Ausgabepegel	NPN / PNP / Pushpull / Pushpull negiert	NPN: Aktiv bei Grenzwertüberschreitung, Last gegen Versorgung PNP: Aktiv bei Grenzwertüberschreitung, Last gegen Versorgungsmasse Pushpull: Schaltausgang ist high bei Grenzwertüber- schreitung Pushpull negiert: Schaltausgang ist low bei Grenz- wertüberschreitung
	Bereichsprüfung	Lower / Upper / Both	Lower: Messwert auf Unterschreitung überwachen Upper: Messwert auf Überschreitung überwachen Both: Messwert auf Über- und Unterschreitung überwachen
	Obergrenze in mm	Wert	Legt den oberen Grenzwert für den Schaltausgang fest.
	Untergrenze in mm	Wert	Legt den unteren Grenzwert für den Schaltausgang fest.
	Hysterese in mm	Wert	Wert, um den der Messwert über- bzw. unterschrit- ten werden muss, damit der Schaltausgang auslöst oder wieder deaktiviert wird.
	Signalpegel halten in ms	Wert	Angabe der Zeit, die der Schaltausgang mindestens aktiv bleiben soll. Die Zeit beginnt mit Aktivierung des Schaltausganges.

Wechseln Sie in Das Menü Einstellungen > Digitalausgänge und wählen Sie die gewünschten Bedingungen.

	Schaltausg	ang 1	Schaltausgan	g 2	Schaltausgan	g 3
Schaltmodus	LIMIT	~	TEACH	~	NONE	~
Ausgabepegel	PNP	~	PNP	~	PUSHPULL	~
Bereichsprüfung	BOTH	~	BOTH	~	BOTH	~
Obergrenze (mm)	60000,0	-	150000,0	*	15000,0	- A
Untergrenze (mm)	1200,0	-	0,0	*	0,0	*
Hysterese (mm)	50,0	\$	20,0	-	0,0	*
Signalpegel halten für		100	🔹 ms			
Analogausgang						
Skaliere max. Abstand		5700,0	🖨 mm	auf Str	omausgabe 2	0 mA
Skaliere min. Abstand		2050.0	≑ mm	auf Str	omausgabe 4	mA

Abb. 30 Menü Digitalausgänge u. a. für Grenzwertüberwachung

Die Schaltausgänge werden abhängig vom eingestellten Ausgabepegel (Schaltverhalten) und der Bereichsprüfung aktiviert.

Die Schaltausgänge werden aktiviert, wenn sich das Messobjekt außerhalb

- des Messbereiches (Analogausgang),
- der Bereichsgrenzen (Ober-/Untergrenze) befindet.

Für eine Überwachung der Bereichsgrenzen sind ein unterer und oberer Grenzwert (in mm) einzugeben. Hinweise zum Schaltverhalten finden Sie bei den elektrischen Anschlüssen, siehe Kap. 5.4.7.

Abb. 31 Schaltausgang 1 mit Bereichsgrenzen (NPN), Schaltausgang 2 mit Messbereichsfehler (PNP)

Soll das Messobjekt auf Verlassen der Messbereichsgrenzen (MBA und MBE) überwacht werden, ist dies mit der Funktion Limit möglich. Dazu müssen die Werte für Ober- und Untergrenze auf den Wert für MBA und MBE gesetzt werden; der Hysteresewert wird nicht berücksichtigt.

Soll das Messobjekt auf Verlassen des Auswertebereiches (Bereichstart und Bereichende) überwacht werden, ist dies mit der Funktion Limit möglich. Dazu müssen die Werte für Ober- und Untergrenze auf den Wert für Bereichstart und Bereichende gesetzt werden; der Hysteresewert wird nicht berücksichtigt.

6.8 Messwerthaltemodus, Fehlerbehandlung

Die Fehlerbehandlung regelt das Verhalten des Analogausgangs und der RS422-Schnittstelle im Fehlerfall.

Fehlerbehandlung	None	Der Analogausgang liefert ca. 3 mA anstatt des Messwerts. Die RS422-Schnitt- stelle gibt einen Fehlerwert aus.		
	Infinite	Analogausgang und RS422-Schnittstelle bleiben auf dem letzten gültigen Wert stehen.		
	Count	Wert	Wertebereich [1 2147483645], letzen Wert über n Zyklen hinweg halten, danach wird ein Fehlerwert ausgegeben.	

Kann kein gültiger Messwert ermittelt werden, wird ein Fehler ausgegeben. Wenn das bei der weiteren Verarbeitung stört, kann alternativ dazu der letzte gültige Wert über eine bestimmte Zeit gehalten, d.h. wiederholt ausgegeben werden. Nach Ablauf der gewählten Anzahl wird ein Fehlerwert ausgegeben.

6.9 Systemeinstellungen

6.9.1 Einstellungen speichern

Nach der Programmierung sind alle Einstellungen dauerhaft zu speichern, damit sie beim nächsten Einschalten des Sensors wieder zur Verfügung stehen.

Wechseln Sie in das Menü Einstellungen > Umgebung und klicken Sie auf die Schaltfläche

Abb. 32 Menü Einstellungen mit der Schaltfläche Speichern

6.9.2 Sprache

Als Sprache sind im sensorTOOL

- Deutsch,
- Englisch,
- Chinesisch,
- Koreanisch oder
- Japanisch möglich.
- Wechseln Sie die Sprache in der Menüleiste.

Abb. 33 Sprachauswahl in der Menüleiste

6.10 ILR2250-100-H mit Klimafunktion

Der Sensor ILR2250-100-H enthält eine kombinierte Heiz- und Kühlfunktion. Diese ermöglicht einen erweiterten Betriebstemperaturbereich von -40 °C bis +65 °C. Wird der Sensor unter 0 °C gestartet, erwärmt die interne Heizung den Sensor automatisch auf die erforderliche Arbeitstemperatur. Während der Aufwärmphase ist eine Messung nicht möglich, der Messlaser ist aus, die LED Power leuchtet gelb.

Nach Abschluss der Heizphase wechselt der Sensor in die Betriebsart Messmodus. Die LED Power leuchtet grün, je nach Messeinstellung wird der Messlaser gestartet.

7. Betrieb ILR2250-100-IO

7.1 Herstellung der Betriebsbereitschaft

- Montieren Sie den Sensor ILR2250 entsprechend den Montagevorschriften, siehe Kap. 5.1.
- Verbinden Sie den Sensor mit den nachfolgenden Anzeige- oder Überwachungseinheiten und der Spannungsversorgung.

HINWEIS Der Sensor darf nur im stromlosen Zustand mit der Peripherie verbunden werden, also nur bei abgeschalteter Versorgungsspannung.

Der Messlaser startet mit Anlegen der Versorgungsspannung, wenn zuvor im Sensor eine aktive Messung (siehe LASER MEASURE ON) gespeichert wurde.

Der Sensor ist nach ca. 2 s betriebsbereit, die digitale Genauigkeit ist unmittelbar gegeben.

- Der Sensor kann in einen Autostart-Zustand gebracht werden. Hierzu müssen alle gewünschten Parameter am
- Sensor eingestellt und gespeichert werden. Wird der Sensor anschließend bei aktiver Messung abgeschaltet nimmt er bei erneuter Verbindung zur Stromversorgung unverzüglich die gespeicherte Messaufgabe wieder auf.

Ist die LED POWER aus, dann fehlt die Versorgungsspannung.

7.2 Bedienung mittels IO-Link

Der Sensor tauscht via IO-Link Prozessdaten und Parameter aus. Verbinden Sie dazu den Sensor mit einem geeigneten IO-Link-Master.

IO-Link Spezifikation	V 1.1
Minimale Zykluszeit	4,0 ms (COM2)
Übertragungsgeschwindigkeit	COM2 (38,4 kBaud)
Prozessdatenbreite	32 Bit ausgehend (vom Gerät zum Master)
Prozessdaten-Typ	Mixed (27 Bit Integer + 3 Boolean)
Parametrierserverfunktion (Data storage)	Ja

Abb. 34 Eigenschaften IO-Link-Schnittstelle

7.3 Prozessdaten

Ab Werk enthält das Prozessdatentelegramm des Sensors den gemessenen Abstandswert. Der Abstandswert wird in Zehntel-Millimeter (27 Bit Integer vorzeichenbehaftet) ausgegeben. Zusätzlich wird der logische Zustand der drei Schaltausgänge durch die letzten drei Bits übertragen.

Bit 0 – Bit 26	Messwert
Bit 29	ErrorOut3 (Schaltausgang 3)
Bit 30	ErrorOut2 (Schaltausgang 2)
Bit 31	ErrorOut1 (Schaltausgang 1)

Abb. 35 Prozessdatenformat ab Werk

7.4 Gerätedaten

Zu den Gerätedaten gehören

- Parameter,
- Identifikationsdaten und
- Diagnosedaten

Diese Informationen können parallel zu den Prozessdaten zu bzw. vom Sensor übertragen werden. Dazu benötigt der IO-Link Master eine sensor-spezifische Gerätebeschreibungsdatei (IODD).

Eine aktuelle Version der Gerätebeschreibungsdatei finden Sie unter:

www.micro-epsilon.de/displacement-position-sensors/laser-distance-sensor/optoNCDT-ILR-2250/.

8. Digitale Schnittstelle RS422

8.1 Vorbemerkungen

Funktion nur in Verbindung mit Sensor ILR2250-100 möglich.

Die Schnittstelle RS422 hat eine maximale Baudrate von 115200 Baud. Die Baudrate ist im Auslieferungszustand auf 115200 Baud eingestellt. Die Messrate beträgt maximal 20 Hz.

Datenformat: Messwerte Binär-Format, Befehle als ASCII-Zeichenkette

Schnittstellenparameter: 8 Datenbits, keine Parität, ein Stoppbit (8N1)

Trennen beziehungsweise verbinden Sie die Sub-D-Verbindung zwischen RS422 und USB-Konverter nur im spannungslosen Zustand.

8.2 Messdatenformat

Für den ILR2250 gilt:

- Die Übertragung erfolgt immer in kompletten Datenframes, das Format wird nicht variiert.
- Jeder Datenframe besteht aus den zwei Werten Zeitstempel in ms und Abstand in 1/10 mm, gefolgt durch Footerbyte.
- Jeder Wert wird in 4 Bytes übertragen, die unteren 7 Bits werden für die Daten verwendet.
- Die 4*7 Bits werden zu einem 28 Bit-Wert zusammengefügt.
- Die Messwertbytes sind im obersten Bit kodiert:
 - 1 es folgen weitere Byte(s),
 - 0 letztes Byte des Messwerts.

Beschreibung	Bit 7 (order Bit)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LSB Timestamp	1	D6	D5	D4	D3	D2	D1	D0
	1	D13	D12	D11	D10	D9	D8	D7
	1	D20	D19	D18	D17	D16	D15	D14
MSB Timestamp	0	D27	D26	D25	D24	D23	D22	D21
LSB Distance	1	D6	D5	D4	D3	D2	D1	D0
	1	D13	D12	D11	D10	D9	D8	D7
	1	D20	D19	D18	D17	D16	D15	D14
MSB Distance	0	D27	D26	D25	D24	D23	D22	D21
Footer	0	0	0	1	Change	0	0	Overflow

Abb. 36 Aufbau Datenwert mit max. 28 Bit

- 0: Bit 5 muss 0 sein, um den Footer vom Zeichen ">" zu unterscheiden.
- C (Change Bit): Änderung der Sensor-Konfiguration; immer Null.
- O (Overflow), immer Null:

Die Konvertierung muss im Anwenderprogramm erfolgen.

Beispiel Abstandswert

Die Abstands Bytes werden im Format Little Endian empfangen.

LSB	1	D6	D5	D4	D3	D2	D1	D0
	1	D13	D12	D11	D10	D9	D8	D7
	1	D20	D19	D18	D17	D16	D15	D14
MSB	0	D27	D26	D25	D24	D23	D22	D21

Der Sensor sendet Daten im Format Big Endian. Das Ergebnis kann so einem Unsigned Integer mit 32 Bit zugewiesen werden. Die ersten 4 Bits sind 0, da der ILR2250 den Abstand mit 28 Bit überträgt.

0	0	0	0	D27	D26	D25	D24
D23	D22	D21	D20	D19	D18	D17	D16
D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Abb. 37 Abstands Bytes in korrekter Reihenfolge (big Endian)

Beispiel mit echten Messwertdaten.

0xc0	0xa6	0xb3	0x05	0xed	0xdd	0x80	0x00	0x10
Zeitstempel					Footer			

Abb. 38 Empfangener Datenframe

Abstand hex-Format	0xed	0xdd	0x80	0x00
Abstand binär, Little Endian	1110 1101	1101 1101	1000 0000	0000 0000
Binär, ohne Markierungsbit	110 1101	101 1101	000 000	000 0000
Binär, Big Endian	000 000	000 000	101 1101	110 1101
Als Unsigned Integer	(0000) 0000	0000 0000	0010 1110	1110 1101
Dezimal	12013			
Als Abstand	1201,3 mm			

Abb. 39 Transformierter Abstandswert

Auch während der Kommunikation mit dem Sensor kann dieser ständig Messwerte am RS422-Ausgang liefern.

Für den Datenaustausch mit einem PC ist der IF2001 Konverter von MICRO-EPSILON geeignet, der über das ebenfalls optionale PC2250-x Standardkabel mit dem Sensor verbunden wird, siehe Kap. A 1. Für eine synchronisierte Datenerfassung mehrerer Sensoren ist die IF2008/ETH geeignet. Weitere Angaben finden Sie in den Beschreibungen der Interface-karte IF2008/ETH sowie des zugehörigen Treiberprogramms MEDAQlib.

Die aktuelle Programmroutine finden Sie unter: www.micro-epsilon.de/link/software/medaqlib.

8.3 Rücksetzen der Baudrate

Sie können beim Start des Sensors die Baudrate auf die Werkseinstellung rücksetzen. Dazu muss die halbe Versorgungsspannung am Triggereingang anliegen. Damit wird der Sensor auf 115200 Baud zurückgesetzt.

Dies bedeutet: Durch den internen Pull-down-Widerstand mit 47 kOhm genügt es, wenn Sie den Anschluss von TRIG über einen Widerstand von 47 kOhm mit $U_{\rm B}$ verbinden.

Abb. 40 Rücksetzen der Baudrate auf Werkseinstellung

9. Reinigung

In regelmäßigen Abständen ist eine Reinigung der Schutzscheiben zu empfehlen.

Trockenreinigung

Hierfür ist ein Optik-Antistatikpinsel geignet oder Abblasen der Scheiben mit entfeuchteter, sauberer und ölfreier Druckluft.

Feuchtreinigung

Benutzen Sie zum Reinigen der Schutzscheibe ein sauberes, weiches, fusselfreies Tuch oder Linsenreinigungspapier und reinen Alkohol (Isopropanol).

Verwenden Sie auf keinen Fall handelsübliche Glasreiniger oder andere Reinigungsmittel.

10. Softwareunterstützung mit MEDAQLib

Mit MEDAQLib steht Ihnen eine dokumentierte Treiber-DLL zur Verfügung. Damit binden Sie Sensoren von MICRO-EPSI-LON in Verbindung mit einem Konverter oder Schnittstellenmodul in eine bestehende oder kundeneigene PC-Software ein.

MEDAQLib

- enthält eine DLL, die in C, C++, VB, Delphi und viele weitere Programme importiert werden kann,
- nimmt Ihnen die Datenkonvertierung ab,
- funktioniert unabhängig vom verwendeten Schnittstellentyp,
- zeichnet sich durch gleiche Funktionen für die Kommunikation (Befehle) aus,
- bietet ein einheitliches Übertragungsformat für alle Sensoren von MICRO-EPSILON.

Für C/C++-Programmierer ist in MEDAQLib eine zusätzliche Header-Datei und eine Library-Datei integriert.

Die aktuelle Treiberroutine inklusive Dokumentation finden Sie unter:

www.micro-epsilon.de/service/download/

www.micro-epsilon.de/link/software/medaqlib/

11. Haftungsausschluss

Alle Komponenten des Gerätes wurden im Werk auf die Funktionsfähigkeit hin überprüft und getestet. Sollten jedoch trotz sorgfältiger Qualitätskontrolle Fehler auftreten, so sind diese umgehend an MICRO-EPSILON oder den Händler zu melden.

MICRO-EPSILON übernimmt keinerlei Haftung für Schäden, Verluste oder Kosten, die z. B. durch

- Nichtbeachtung dieser Anleitung / dieses Handbuches,
- Nicht bestimmungsgemäße Verwendung oder durch unsachgemäße Behandlung (insbesondere durch unsachgemäße Montage, Inbetriebnahme, Bedienung und Wartung) des Produktes,
- Reparaturen oder Veränderungen durch Dritte,
- Gewalteinwirkung oder sonstige Handlungen von nicht qualifizierten Personen

am Produkt entstehen, entstanden sind oder in irgendeiner Weise damit zusammenhängen, insbesondere Folgeschäden.

Diese Haftungsbeschränkung gilt auch bei Defekten, die sich aus normaler Abnutzung (z. B. an Verschleißteilen) ergeben, sowie bei Nichteinhaltung der vorgegebenen Wartungsintervalle (sofern zutreffend).

Für Reparaturen ist ausschließlich MICRO-EPSILON zuständig. Es ist nicht gestattet, eigenmächtige bauliche und/oder technische Veränderungen oder Umbauten am Produkt vorzunehmen. Im Interesse der Weiterentwicklung behält sich MICRO-EPSILON das Recht auf Konstruktionsänderungen vor.

Im Übrigen gelten die Allgemeinen Verkaufsbedingungen der MICRO-EPSILON, die unter Impressum | Micro-Epsilon https://www.micro-epsilon.de/impressum/ abgerufen werden können.

12. Service, Reparatur

Bei einem Defekt am Sensor oder des Sensorkabels:

- Speichern Sie nach Möglichkeit die aktuellen Sensoreinstellungen in einem Parametersatz, um nach der Reparatur die Einstellungen wieder in den Sensor laden zu können, siehe Kap. 6.9.1.
- Senden Sie bitte die betreffenden Teile zur Reparatur oder zum Austausch ein.

Bei Störungen, deren Ursachen nicht eindeutig erkennbar sind, senden Sie bitte immer das gesamte Messsystem an:

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße Straße 101 73037 Göppingen / Deutschland

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 e-mail info@micro-epsilon.de www.micro-epsilon.de

13. Außerbetriebnahme, Entsorgung

Um zu vermeiden, dass umweltschädliche Stoffe freigesetzt werden und um die Wiederverwendung von wertvollen Rohstoffen sicherzustellen, weisen wir Sie auf folgende Regelungen und Pflichten hin:

- Sämtliche Kabel am Sensor und/oder Controller sind zu entfernen.
- Der Sensor und/oder Controller, dessen Komponenten und das Zubehör sowie die Verpackungsmaterialien sind entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des jeweiligen Verwendungsgebietes zu entsorgen.
- Sie sind verpflichtet, alle einschlägigen nationalen Gesetze und Vorgaben zu beachten.

Für Deutschland / die EU gelten insbesondere nachfolgende (Entsorgungs-) Hinweise:

 Altgeräte, die mit einer durchgestrichenen Mülltonne gekennzeichnet sind, dürfen nicht in den normalen Betriebsmüll (z.B. die Restmülltonne oder die gelbe Tonne) und sind getrennt zu entsorgen. Dadurch werden Gefahren für die Umwelt durch falsche Entsorgung vermieden und es wird eine fachgerechte Verwertung der Altgeräte sichergestellt.

- Eine Liste der nationalen Gesetze und Ansprechpartner in den EU-Mitgliedsstaaten finden Sie unter https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en. Hier besteht die Möglichkeit, sich über die jeweiligen nationalen Sammel- und Rücknahmestellen zu informieren.
- Altgeräte können zur Entsorgung auch an MICRO-EPSILON an die im Impressum unter https://www.micro-epsilon.de/impressum/ angegebene Anschrift zurückgeschickt werden.
- Wir weisen darauf hin, dass Sie für das Löschen der messspezifischen und personenbezogenen Daten auf den zu entsorgenden Altgeräten selbst verantwortlich sind.
- Unter der Registrierungsnummer WEEE-Reg.-Nr. DE28605721 sind wir bei der Stiftung Elektro-Altgeräte Register, Nordostpark 72, 90411 Nürnberg, als Hersteller von Elektro- und/ oder Elektronikgeräten registriert.

Anhang

A 1 Optionales Zubehör

IF2001/USB	And	Umsetzer von RS422 auf USB, Typ IF2001/USB, passend für Kabel PC2250-x, inklusive Treiber, Anschlüsse: 1× Buchsen-leiste 10-pol. (Kabelklemme) Typ Würth 691361100010, 1x Buchsenleiste 6-pol. (Kabelklemme) Typ Würth 691361100006
IF2004/USB		4-fach Umsetzer von RS422 auf USB passend für Kabel PCF2250-x/IF2004, inklusive Treiber, Anschlüsse: 2 x Sub-D, 1 x Klemmleiste
IF2008/ETH		8-fach Umsetzer von RS422 auf Ethernet mit industrial M12 Stecker/Buchse passend für Kabel PCE2250-x
PS2020		Netzteil für Hutschienenmontage, Eingang 230 VAC, Ausgang 24 VDC/2,5 A
IF2030/PNET		Schnittstellenmodul zur PROFINET-Anbindung bzw. Ethernet-Anbin-
IF2030/ENETIP		dung eines Micro-Epsilon Sensors mit RS485 oder RS422-Schnitt- stelle, passend für Kabel PC2250-x und PC2250/90-x, Hutschienen- gehäuse, inkl. GSDML-Datei zur Softwareeinbindung in der SPS
PC2250-x ¹		Versorgungs-/Ausgangskabel, x m lang, für optoNCDT ILR Serie 2250, Stecker gerade, M16 Stecker 12-polig; 3, 5, 10, 20, 25, 30, 40, 50 m lang mit offenen Enden (unverzinnt)
PC2250/90-x ¹		Versorgungs-/Ausgangskabel, x m lang, für optoNCDT ILR Serie 2250, mit Winkelbuchse 90°; M16 Stecker 12-polig; 3, 5, 10, 20, 30, 40 m lang mit offenen Enden (unverzinnt)
PCF2250-3/IF2004		Versorgungs-/Ausgangskabel, 3 m lang, für 4-fach Umsetzer IF2004/USB, mit M16 Steckverbinder und Sub-HD Stecker 15-polig
PCE2250-x		Versorgungs-/Ausgangskabel, x m lang, für 8-fach Umsetzer IF2008/ETH, mit M16 und M12 Steckverbinder
PCE2250-3/IF2008ETH		Verbindungskabel zwischen ILR2250-100 und IF2008/ETH, Länge 3 m.
PC2250-x IO-Link		Versorgungs-/Ausgangskabel, $x = 5$, 10 oder 15 m lang, beidseitig 5-pol. M12 Steckverbinder, Verbindung zu IO-Link
ILR-PG2250 Schutzglas		Optisches Glas, mit Antireflexbeschichtung und hoher Transmission
ILR-NDF2250 Filterglas		Optischer Graufilter, verringert die maximale Laserleistung. Ermög- licht Messungen auf stark spiegelnde Oberflächen. Eine Reduzie- rung des Messbereiches ist dabei möglich. Kontaktieren Sie vor dem Einsatz Ihren regionalen Vertriebs-Anprechpartner.

1) Alle Längen sind auch in schleppkettentauglicher Ausführung erhältlich.

A 2 Werkseinstellung

A 2.1 ILR2250-100

Preset	Automatik	
Baudrate	115200 Baud	
Laser	Measure	
Auswertebereich	0,0 mm (Start) 150000,0 mm (Ende)	
Skalierung Analogausgang	50 mm (min) 8000 mm (max)	
Trigger	inaktiv	
RS422	Timestamp und Abstandswert	
Schaltausgang 1/2/3	inaktiv Ausgabepegel Pushpull Untergrenze 0,0mm Hysterese 0,0mm	Bereichsprüfung Both Obergrenze 150000,0 mm Signalpegel halten 1 ms

A 2.2 ILR2250-100-IO

Preset	Automatik
Übertragungsgeschwindigkeit	COM2 (38,4 kBaud)
Laser	Measure

A 3 ASCII-Kommunikation mit Sensor

A 3.1 Allgemein

Die ASCII-Befehle können über die Schnittstelle RS422 an den Sensor gesendet werden. Alle Befehle, Eingaben und Fehlermeldungen erfolgen in Englisch. Ein Befehl besteht immer aus dem Befehlsnamen und Null oder mehreren Parametern, die durch Leerzeichen getrennt sind und mit LF abgeschlossen werden. Wenn Leerzeichen in Parametern verwendet werden, so ist der Parameter in Anführungszeichen zu setzen, z.B. "Passwort mit Leerzeichen".

Beispiel: Ausgabe über RS422 einschalten

OUTPUT RS4	422 🖵	
Hinweis:		muss LF beinhalten, kann aber auch CR LF sein.
Erklärung:	LF	Zeilenvorschub (line feed, hex 0A)
	CR	Wagenrücklauf (carriage return, hex 0D)
	⊸	Enter (je nach System hex 0A oder hex 0D0A)
Dor altual a	ngootallt	- Peremeterwert wird zurückgegeben, wenn ein Refel

Der aktuell eingestellte Parameterwert wird zurückgegeben, wenn ein Befehl ohne Parameter aufgerufen wird.

Die Eingabeformate sind:

<Befehlsname> <Parameter1> [<Parameter2> [...]] <Befehlsname> <Parameter1> <Parameter2> ... <Parameter...>

oder eine Kombination davon.

Parameter in []-Klammern sind optional und bedingen die Eingabe des davor stehenden Parameters. Aufeinanderfolgende Parameter ohne []-Klammern sind zwingend einzugeben, d. h. es darf kein Parameter weggelassen werden. Alternative Eingaben von Parameter-Werten werden durch "|" getrennt dargestellt, z. B. für "a|b|c" können die Werte "a", "b" oder "c" gesetzt werden. Parameter-Werte in <>-Klammern sind wählbar aus einem Wertebereich.

Erklärungen zum Format:

"a b"	Wert des Parameters kann auf den Wert "a" oder "b" gesetzt werden.
" P1 P2"	Es müssen beide Parameter "P1" und "P2" gesetzt werden.
" P1 [P2 [P3]]"	Es können die Parameter "P1", "P2" und "P3" gesetzt werden, wobei "P2" nur gesetzt werden darf, wenn "P1" gesetzt ist und "P3" nur wenn "P1" und "P2" gesetzt sind.
" <a>"	Der Wert des Parameters liegt in einem Wertebereich von " bis", siehe Parameterbeschreibung.

Parameter-Werte ohne Spitze Klammern können nur diskrete Werte annehmen, siehe Parameterbeschreibung. Runde Klammern sind als Gruppierung zu verstehen, d. h. für eine bessere Verständlichkeit wird "P1 P2|P3" als "(P1 P2)|P3" geschrieben.

Beispiel ohne []:

"PASSWD < Altes Passwort> < Neues Passwort> < Neues Passwort>"

- Zur Änderung des Passwortes sind alle 3 Parameter einzugeben.

Das Ausgabe-Format ist:

<Befehlsname> <Parameter1> [<Parameter2> [...]]

Die Antwort kann ohne Änderungen wieder als Befehl für das Setzen des Parameters verwendet werden. Optionale Parameter werden nur dann mit zurückgegeben, wenn die Rückgabe nötig ist. Zum Beispiel werden bei dem Befehl Datenauswahl zusätzliche Werte nur die aktivierten Ausgabewerte zurückgegeben.

Nach der Verarbeitung eines Befehls wird immer ein Zeilenumbruch und ein Prompt ("->") zurückgegeben. Im Fehlerfall steht vor dem Prompt eine Fehlermeldung welche mit "Exxx" beginnt, wobei xxx für eine eindeutige Fehlernummer steht. Außerdem können anstatt von Fehlermeldungen auch Warnmeldungen ("Wxxx") ausgegeben werden. Diese sind analog zu den Fehlermeldungen aufgebaut. Bei Warnmeldungen wurde der Befehl ausgeführt.

Bei Supportanfragen zum Sensor sind die Antworten auf die Befehle GETINFO und PRINT hilfreich, da sie die Sensoreinstellungen enthalten.

A 3.2 Übersicht Befehle

Gruppe	Kapitel	Befehl	Kurzinfo
Allgemein			·
	Kap. A 3.3.1	HELP	Hilfe zu Befehlen
	Kap. A 3.3.2	GETINFO	Sensorinformation abfragen
	Kap. A 3.3.3	GETTEMP	Sensortemperatur ermitteln
	Kap. A 3.3.4	RESET	Sensor neu booten
	Kap. A 3.3.5	RESETCNT	Zähler zurücksetzen
	Kap. A 3.3.6	PRINT	Ausgabe aller Messeinstellungen
	Kap. A 3.3.7	PRINT ALL	Ausgabe von Messeinstellungen und Sensorinformation
Triggerung			
	Kap. A 3.4.1	TRIGGER	Set trigger mode
	Kap. A 3.4.2	TRIGGERAT	Wirkung des Triggereingangs
	Kap. A 3.4.3	TRIGGERLEVEL	Pegel für Schalteingang auswählen
	Kap. A 3.4.4	TRIGGERCOUNT	Anzahl der anzugebenden Messwerte
	Kap. A 3.4.5	TRIGGERSW	Software - Triggerimpuls
Schnittstell	en		
	Kap. A 3.5.1	BAUDRATE	Übertragungsrate der RS422 einstellen
	Kap. A 3.5.2	ERROROUT1/2/3	Schaltausgänge aktivieren
	Kap. A 3.5.3	ERRORLEVELOUT1/2/3	Ausgangspegel Schaltausgänge
	Kap. A 3.5.4	ERRORLIMITCOMPARETO1/2/3	Überwachungsfunktion Schaltausgänge
	Kap. A 3.5.5	ERRORLIMITVALUES1/2/3	Schwellwert Schaltausgänge
	Kap. A 3.5.6	ERRORHYSTERESIS1/2/3	Hysteresewert Schaltausgänge
	Kap. A 3.5.7	ERROROUTHOLD	Min. Schaltzeit aktiver Schaltausgang
	Kap. A 3.5.8	OUTHOLD	Fehlerbehandlung
Setup- und	Messeinstellur	igen	
	Kap. A 3.6.1	MEASSETTINGS	Messeinstellungen laden/speichern
	Kap. A 3.6.2	BASICSETTINGS	Geräteeinstellungen laden/speichern
	Kap. A 3.6.3	SETDEFAULT	Werkseinstellungen
	Kap. A 3.6.4	LASER	Messlaser einschalten, Messung starten
	Kap. A 3.6.5	ROI	Maskierung des Auswertebereichs
Datenausga	lbe		
	Kap. A 3.7.1	OUTPUT	Auswahl Messwertausgang
	Kap. A 3.7.2	GETOUTINFO_RS422	Vorgesehene Daten für die RS422 auflisten
	Kap. A 3.7.3	OUTADD_RS422	Datenauswahl zusätzliche Werte
	Kap. A 3.7.4	ANALOGSCALERANGE	Skalierungsgrenzen Analogausgang

A 3.3 Allgemeine Befehle

A 3.3.1 HELP

HELP [<command>]

Ausgabe einer Hilfe zu jedem Befehl.

Befehl ohne Parameter

<Befehl> // Befehl wird ausgeführt

Befehl mit Parameter

<command/>	// Zeige aktuelle Parameterwerte
<command/> <parameter1> [<parameter2> []]</parameter2></parameter1>	// Setze die Parameter, die Anzahl der Parameter variiert
<command/> <parameter1> <parameter2> <parameter></parameter></parameter2></parameter1>	// Setze die Parameter, die Anzahl der Parameter steht fest

Antwort auf einen Befehl

->	Cursor, der Sensor wartet auf eine Eingabe
E <ddd></ddd>	Fehlermeldung, die Ausführung wurde abgelehnt
<ddd></ddd>	Fehlercodeg
Formaterklärung	
0	Gruppierung
[]	Optionale Parameter
<>	Platzhalter
	Alternative
Enthält ein Paramete	er Leerzeichen, sind diese in Anführungszeichen zu setzen.
Beispiele:	
a b	// Verwende a oder b

b
~

a [b [c]]

// Beide Parameter sind erforderlich
// Nicht feststehende Anzahl an Parametern: a, a b, oder a b c

A 3.3.2 GETINFO, Sensorinformation

GETINFO

Abfragen der Sensor-Information. Ausgabe siehe untenstehendes Beispiel:

->GETINFO		
Name:	ILR2250	//Modelname Sensor
Serial:	1252	//Seriennummer
Option:	000	//Optionsnummer des Sensors
Article:	7112015	//Artikelnummer des Sensors
Measuring range:	150000.0mm	//Messbereich des Sensors
Version:	1.0	//Version der Software
Hardware-rev:	00	
->		

A 3.3.3 GETTEMP

GETTEMP

Liefert die Innentemperatur des Sensors in °C mit einer Nachkommastelle.

A 3.3.4 RESET, Sensor booten

RESET

Der Sensor wird neu gestartet.

A 3.3.5 RESETCNT, Zähler zurücksetzen

RESETCNT TIMESTAMP

Setzt den internen Zeitstempel im Sensor zurück.

A 3.3.6 PRINT, Sensoreinstellungen

PRINT

Print dient der Ausgabe aller Messeinstellungen. Beispiel einer Antwort:

BAUDRATE 115200	ERRORHYSTERESIS1 0.0
LASER MEASURE	ERRORHYSTERESIS2 0.0
ROI 0.0 150000.0	ERRORHYSTERESIS3 0.0
OUTPUT RS422	ERRORLIMITCOMPARETO1 BOTH
ANALOGSCALERANGE 50.0 8000.0	ERRORLIMITCOMPARETO2 BOTH
TRIGGER NONE	ERRORLIMITCOMPARETO3 BOTH
TRIGGERAT INPUT	ERRORLIMITVALUES1 0.0 150000.0
TRIGGERCOUNT 1	ERRORLIMITVALUES2 0.0 150000.0
TRIGGERLEVEL HIGH	ERRORLIMITVALUES3 0.0 150000.0
ERROROUT1 NONE	ERROROUTHOLD 0
ERROROUT2 NONE	OUTHOLD NONE
ERROROUT3 NONE	MEASSETTINGS PRESETMODE AUTO
ERRORLEVELOUT1 PUSHPULL	GETOUTINFO_RS422 TIMESTAMP DIST1
ERRORLEVELOUT2 PUSHPULL	
ERRORLEVELOUT3 PUSHPULL	->

A 3.3.7 PRINT ALL

PRINT ALL

Dieses Kommando kombiniert die beiden Befehle GETINFO und PRINT. Neben den aktuellen Messeinstellungen wird auch die Sensorinformation ausgegeben.

A 3.4 Triggerung

Der Schalteingang TRIG dient als Triggereingang.

A 3.4.1 TRIGGER

TRIGGER [NONE | EDGE | PULSE | SOFTWARE]

Auswahl der Triggerart.

- NONE: Keine Triggerung
- EDGE: Flankentriggerung
- PULSE: Pegeltriggerung
- SOFTWARE: Softwaretriggerung

A 3.4.2 TRIGGERAT

TRIGGERAT [INPUT|OUTPUT]

Bestimmt die Triggerart für Datenaufnahme oder Datenausgabe.

- INPUT: Triggerung der Messwertaufnahme.
- OUTPUT: Triggerung der Messwertausgabe.

A 3.4.3 TRIGGERLEVEL

TRIGGERLEVEL [HIGH|LOW]

Bestimmt den Aktivpegel einer Triggerung.

- HIGH: HIGH: Flankentriggerung: Steigende Flanke, Pegeltriggerung: High-Aktiv
- LOW: Flankentriggerung: Fallende Flanke, Pegeltriggerung: Low-Aktiv

A 3.4.4 TRIGGERCOUNT

TRIGGERCOUNT [<n> | INFINITE]

Legt die Anzahl der auszugebenden Messwerte beim Triggern fest.

- INFINITE: Start der kontinuierlichen Ausgabe nach dem ersten Triggerereignis
- <n>: Anzahl der auszugebenden Werte nach jedem Triggerereignis n = 1 ...2.147.483.646.

A 3.4.5 TRIGGERSW

TRIGGERSW

Erzeugen eines Software-Triggerimpulses.

A 3.5 Schnittstellen

A 3.5.1 BAUDRATE

BAUDRATE [9600|115200]

Einstellen der Baudrate für die RS422-Schnittstelle.

A 3.5.2 ERROROUT1/2/3, Schaltausgang aktivieren

ERROROUT1 [NONE|TEACH|LIMIT] ERROROUT2 [NONE|TEACH|LIMIT] ERROROUT3 [NONE|TEACH|LIMIT]

Fehlersignal der Schaltausgänge auswählen.

- NONE: Schaltausgang ist nicht aktiv
- TEACH: Schaltausgang reagiert, wenn ein Fehlerstrom von ca. 3 mA ausgegeben wird.
- LIMIT: Schaltausgang reagiert, wenn die Obergrenze überschritten bzw. die Untergrenze unterschritten wird.

A 3.5.3 ERRORLEVELOUT1/2/3

ERRORLEVELOUT1 [NPN|PNP|PUSHPULL|PUSHPULLNEG] ERRORLEVELOUT2 [NPN|PNP|PUSHPULL|PUSHPULLNEG]

ERRORLEVELOUT3 [NPN | PNP | PUSHPULL | PUSHPULLNEG]

Auswahl des Ausgangspegels für die Fehlerausgänge.

- NPN: Schaltausgang ist passiv bei Fehler.
- PNP: Schaltausgang ist aktiv bei Fehler.
- PUSHPULL: Schaltausgang ist high bei Fehler.
- PUSHPULLNEG: Schaltausgang ist low bei Fehler.

A 3.5.4 ERRORLIMITCOMPARETO1/2/3

ERRORLIMITCOMPARETO1 [LOWER|UPPER|BOTH] ERRORLIMITCOMPARETO2 [LOWER|UPPER|BOTH]

ERRORLIMITCOMPARETO3 [LOWER|UPPER|BOTH]

Legt die Überwachungsfunktion für die Schaltausgänge fest.

- LOWER: Der Messwert wird auf eine Unterschreitung des Grenzwertes überwacht.
- UPPER: Der Messwert wird auf eine Überschreitung des Grenzwertes überwacht.
- BOTH: Der Messwert wird auf eine Über- und Unterschreitung der Grenzwerte überwacht.

A 3.5.5 ERRORLIMITVALUES1/2/3

```
ERRORLIMITVALUES1 [<lower> <upper>]
ERRORLIMITVALUES2 [<lower> <upper>]
ERRORLIMITVALUES3 [<lower> <upper>]
```

Legt den unteren und oberen Grenzwert für die Schaltausgänge fest.

Wertebereich:

<lower> Wertebereich zwischen 0,0 und 150.000,0 (mm, eine Dezimalstelle)

<up><up>vper> Wertebereich zwischen 0,0 und 150.000,0 (mm, eine Dezimalstelle)

A 3.5.6 ERRORHYSTERESIS1/2/3

```
ERRORHYSTERESIS1 [<hysteresis>]
ERRORHYSTERESIS2 [<hysteresis>]
ERRORHYSTERESIS3 [<hysteresis>]
```

Wert, um den der Messwert über- bzw. unterschritten werden muss, damit der Schaltausgang auslöst oder wieder deaktiviert wird.

<hysteresis>: Wertebereich zwischen 0,0 und 150.000,0 (mm, eine Dezimalstelle)

A 3.5.7 ERROROUTHOLD

ERROROUTHOLD [<time>]

Angabe der Zeitdauer in ms, die der Schaltausgang bei Grenzwertüberschreitung mindestens aktiv bleiben soll. Die Zeitdauer beginnt mit Überschreiten des Grenzwerts.

<time> Wertebereich zwischen 0 und 10000 ms.

A 3.5.8 OUTHOLD, Fehlerbehandlung

OUTHOLD [NONE | 0 | < count>]

Einstellen des Verhaltens der Messwertausgabe im Fehlerfall.

- NONE: Kein Halten des letzten Messwertes, Ausgabe des Fehlerwertes.
- 0: Unendliches Halten des letzten Messwertes
- <count> Halten des letzten Messwertes über n Messzyklen hinweg; danach wird ein Fehlerwert ausgegeben.
 n = (1 ... 2147483645).

A 3.6 Setup- und Messeinstellungen

A 3.6.1 MEASSETTINGS

MEASSETTINGS [READ|STORE|PRESETLIST|PRESETMODE [<mode>]]

Einstellungen der Messaufgabe. Lädt herstellereigene Presets bzw. nutzerspezifische Setups vom Sensor oder speichert nutzerspezifische Setups im Sensor.

- READ: Messeinstellungen vom nichtflüchtigen Speicher lesen.
- STORE: Messeinstellungen in nichtflüchtigen Speicher schreiben.
- PRESETLIST: Auflisten aller vorhandenen Konfigurationen
- PRESETMODE: Setzt eine Konfiguration
- <mode>: Name einer mit dem Unterkommando PRESETMODE gelistete Konfiguration.

A 3.6.2 BASICSETTINGS

BASICSETTINGS [READ|STORE]

- READ: Lädt die gespeicherten Geräteeinstellungen vom Sensor.
- STORE: Speichert die aktuellen Geräteeinstellungen im Sensor.

A 3.6.3 SETDEFAULT, Werkseinstellungen

SETDEFAULT MEASSETTINGS

Setzt den Sensor in die Werkseinstellung zurück.

- ALL: Löschen der Mess- bzw. Geräteeinstellungen und Laden des Standard-Presets für die Messeinstellungen bzw. der Default-Parameter für die Geräteeinstellungen.
- MEASSETTINGS: Löschen der Messeinstellungen und Laden des Standard Presets.
- BASICSETTINGS: Löschen der Geräteeinstellungen und Laden der Default-Parameter.

A 3.6.4 LASER

LASER [OFF|ON|MEASURE]

- OFF: Schaltet den Laser aus, beendet die Messung.
- ON: Schaltet den Laser für Montagezwecke ein, keine Messung.
- MEASURE: Startet eine Messung.

A 3.6.5 ROI, Auswertebereich

ROI [<lower> <upper>]

Setzen des Auswertebereichs, der Wertebereich für Anfang und Ende liegt zwischen MBA und MBE. Der Wert "Start <lower>" ist kleiner als der Wert "Ende <upper>".

<lower> Wertebereich zwischen MBA und MBE (mm, eine Dezimalstelle)

A 3.7 Datenausgabe

A 3.7.1 OUTPUT

OUTPUT [NONE|RS422|RS422_ASCII]

Output of measurement results to serial interface.

- NONE: Keine Messwertausgabe.
- RS422: Binärausgabe der Messwerte über RS422.
- RS422_ASCII: Ausgabe der Messwerte über RS422 via ASCII.

A 3.7.2 GETOUTINFO_RS422, Abfrage Datenauswahl

GETOUTINFO RS422

Der Befehl listet alle für die Schnittstelle RS422 gewählten Ausgabedaten auf. Die dargestellte Reihenfolge entspricht der Ausgabereihenfolge.

A 3.7.3 OUTADD_RS422, Datenauswahl zusätzliche Werte

OUTADD RS422 NONE | ([TIMESTAMP])

Auswahl von zusätzlich zu übertragenden Werten.

- NONE: Keine weiteren Werte ausgeben
- TIMESTAMP: Ausgabe des Zeitstempels

A 3.7.4 ANALOGSCALERANGE

```
ANALOGSCALERANGE [<lower> <upper>]
```

Setzt die Skalierungsgrenzen des Analogausganges bei Zweipunktskalierung.

Wertebereich: limit 1> = (-2 ... +2) * Messbereich [mm] <limit 2> = (-2 ... +2) * Messbereich [mm]

Die Skalierungsgrenzen dürfen nicht identisch sein, <lower> ist kleiner als <upper>.

<lower> Wertebereich zwischen MBA und MBE (mm, eine Dezimalstelle)

A 3.8 ASCII-Fehlercodes

Fehlercode	Beschreibung
E104	Timeout
E110	Processing of configuration failed
E111	Measurement result invalid
E112	Error while executing command
E180	Internal error in laser module communication
E181	Timeout in laser module communication
E182	Laser module command interrupted
E183	Device busy
E184	Command error in laser module communication
E185	Tracking measurement time too short
E186	Error in laser module communication
E187	Distance not in measurement range
E188	Temperature too high
E189	Temperature too low
E190	Signal too low or distance not in range
E191	Signal too high
E192	Signal too noisy
E193	Laser module voltage too low
E194	Signal too unstable
E195	Laser not in measurement mode
E196	Temperature gradient too high
E204	Invalid character in input
E210	Unknown command keyword
E214	Entered command is too long to be processed
E215	Input or command buffer overflow
E232	Wrong parameter count
E234	Missing/unexpected parameters or wrong parameter type
E236	Invalid parameter value
E363	Setting is invalid
E600	ROI begin is greater than roi end
E616	Software triggering is not active

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 · 73037 Göppingen / Deutschland Tel. +49 (0) 7161 / 98872-300 · Fax +49 (0) 7161 / 98872-303 info@micro-epsilon.de · www.micro-epsilon.de Your local contact: www.micro-epsilon.com/contact/worldwide/

X9750422-B052014HDR © MICRO-EPSILON MESSTECHNIK